
University of Applied Sciences Munich

Faculty of Computer Science and Mathematics

Masterthesis

for Obtaining the Academic Degree of

Master of Science

in Course of Studies IT Security

Quality Assessment of SBOM
Generation Tools and Standards

on Open Source Projects

Author: Marius Biebel

Matriculation number:

Submission Date: 26. April 2024

Supervisor: Prof. Dr. Peter Trapp

Advisor: Prof. Dr. Erik Krempel

1 Acknowledgements

Many thanks go to my professors, Peter Trapp and Erik Krempel, for their support and
guidance. They gave me the freedom to explore this topic and provided me with valuable
feedback. Especially from a scientific perspective. And also with the advice to not get lost
in the details.

Also, I would like to thank the CycloneDX and Software Package Data Exchange (SPDX)
community for their work and for letting me join their working groups and sharing
insights into the background of their work. I especially want to thank the OpenSSF
Software Bill of Materials (SBOM) Everywhere working group for their work and the
discussions we had. It was a treat to work with you, and I hope we can continue our work
in the future.

I was also backed by my employer, the German Patent and Trademark Office, which
allowed me to work part-time and study IT security.

Last but not least, I want to thank my parents and friends for their support. Without
them, I would not have been able to finish this thesis.

1

2 Abstract

With the increasing complexity of modern software composition and an ever-growing
software supply chain, where numerous resources are sourced from open-source projects,
the need to keep track of these resources has arisen. Following the Log4j incident [29], the
American Government passed Executive Order (EO) 14028, mandating a SBOM for all
software products sold to federal government agencies. Similarly, the European Union
passed the Cyber Resiliance Act (CRA), which requires an SBOM for all digital products in
the European market. For these reasons, machine-readable SBOM formats have emerged
in recent years, implemented by a wide variety of projects that produce and consume such
SBOMs.

This thesis investigates a collection of projects that generate SBOMs at various stages of
the software development lifecycle. Each generator is applied to open-source projects to
produce SBOMs. This study examines and compares the features provided by these SBOMs.
Additionally, it assesses the completeness of the enumerated packages/components by
analyzing the overlap among the SBOMs generated for each project.

The thesis highlights the distinctions between various tools and phases, highlighting
potential bugs in the implementation of the tools investigated. It elucidates the variances
in the SBOMs generated at different phases of the software development lifecycle. An anal-
ysis was conducted to identify which components of the CycloneDX and SPDX schemas
were enriched with data during the SBOMs generation process. Furthermore, the research
reveals that the tooling examined produces results of varying quality and depth. A metric
was introduced to quantify the overlap among the diverse SBOMs, yielding mixed results.

It is concluded that the quality and applicability of a produced SBOM can vary dras-
tically depending on the use case. This variation is partly attributable to the different
methodologies implemented by the investigated tools but also partly based on divergent
results in the quality or depth of the generated SBOMs, where identifiers are produced in
different ways or values are not sufficiently enriched.

The thesis aims to propose initial methods for validating the enrichment of a SBOM
and assessing its completeness. This was done by testing the implemented generators on
real-world projects.

2

Contents

1 Acknowledgements 1

2 Abstract 2

3 Introduction 1
3.1 Motivation . 2
3.2 Related Work . 3
3.3 Research Goals . 4

4 SBOM Standards 5
4.1 Software Package Data Exchange . 5
4.2 CycloneDX . 7
4.3 SWID . 9

5 Methodology 11
5.1 Selection of Open Source Projects . 11
5.2 Selection of SBOM Generators . 11
5.3 SBOM Quality Assessment . 12

5.3.1 Generation . 12
5.3.2 Conversion of SBOMs . 13
5.3.3 Interacting with SBOM Data . 13

6 SBOM Generators 15
6.1 Generator Specifications . 15
6.2 Generation Summary . 16

7 SBOM Data Assessment 19
7.1 SBOM Overall Enrichment . 19

7.1.1 CycloneDX Overall Enrichment . 19
7.1.2 SPDX Overall Enrichment . 19

7.2 SBOM Schema Compliance . 21
7.3 Current Quality Metricses . 22

7.3.1 NTIA minimum elements . 22
7.3.2 eBay SBOM Scorecard . 25
7.3.3 SBOMQS Quality Metrics for SBOMs 26

8 Dependency Insights 27
8.1 Dependency Intersections between SBOMs by Examples 27
8.2 Quantifying the Intersecting Consensus . 31
8.3 Interpreting the Results . 32

3

Contents

9 SBOM License Insights 37
9.1 SPDX License Features . 37
9.2 CycloneDX License Features . 37
9.3 Comparison of License Features . 38

10 SBOM Relationship Insights 43
10.1 SPDX Relationships . 43
10.2 CycloneDX Dependency Relationships . 44

11 Results / Findings 45
11.1 General Results . 45

11.1.1 SBOM Standards . 45
11.1.2 SBOM Generation . 45
11.1.3 SBOM Data Assessment . 46
11.1.4 SBOM insights . 46

11.2 Findings from a Developer Perspective . 47
11.3 Findings from a Consumer Perspective . 47
11.4 Findings for Generators . 48
11.5 Findings for Spesification Standardisation 48

12 Limitations 50

13 Further work 51

14 Summary 52

15 Appendix 53
15.1 Details on SBOM Generation . 53

15.1.1 CdxGen . 53
15.1.2 GitHub Dependency Graph . 54
15.1.3 Microsoft SBOM Tool . 55
15.1.4 ScanCode Toolkit . 56
15.1.5 Syft . 56
15.1.6 Tern . 58
15.1.7 Trivy . 58

15.2 Detailed Data on SBOM Assessment . 60
15.3 Excurs Dependency insights . 66

15.3.1 Differences in Dependency Enrichment 66
15.3.2 Jenkins Example . 67
15.3.3 Generalising to all Samples . 71

Bibliography 74

Glossary 78

4

3 Introduction

The availability of freely accessible open source software has become one of the funda-
mental driving forces behind innovation in software development. Nowadays, a vast
majority of systems are built on some form of open source software. This may include
entire application frameworks, such as the Java Jakarta framework or the Spring frame-
work. It also applies to application servers like Nginx or Apache servers that offer to
host a self-developed software. And this fact also reaches down to the basic OS layer.
Prominently, the Linux Kernel and lots of operating systems based on the Linux Kernel
are open source and widely used. It can be said that open source is an inevitable building
block for the majority of services used in our modern day lifes.

While open source software offers numerous advantages, it also presents a potential
attack surface for adversaries. The supply chain for a product based on open-source
software becomes increasingly complex, particularly when the system is based on a mixed
ecosystem where several different programming languages and platforms work together
to compose a project. Nowadays, it is common for larger projects to be composed of
several technologies, such as C or C++ for performance or driver implementations, Java or
Python for actual system logic, and a frontend system like a PHP application server or
a JavaScript framework like React, Vue.js, or Angular. Additionally, bigger projects are
often composed for a wide variety of platforms, such as Windows and Linux, or different
architectures like 32 or 64-bit systems, or x86 or ARM processor architecture. Moreover,
there are different virtualization systems like Docker, Kubernetes, or Clouds that get
served with their customized builds. All of this complexity makes it challenging to keep
track of versions and flavors of the affected products.

Given this complexity, there is a clear need to keep track of the increasingly complex
software composition, especially as more and more vulnerabilities are found in open
source projects. The Log4j vulnerability is a case in point. This vulnerability was based
on a simple expression language tag, which would be interpreted by the logging library if
such a statement was logged. An attacker could use this to load code from a remote source
via an JNDI injection and execute arbiter code from a remote source via URL. Log4j is a
widely used library in the Java ecosystem. Finding and replacing this vulnerable library
in all affected products was a prime example of the need to track the used products and
their dependencies in an infrastructure. [29]

The American government’s EO 14028 has further catalyzed this debate [30]. In the
EO, the White House addressed the need for enhancing software supply chain security.
To achieve this, software suppliers for American federal government agencies will be
required to provide a SBOM for their products. This will enable software users to keep
track of all the components contained in a product and ensure that they are up-to-date
or if there are recently discovered vulnerabilities in a software product. In addition, the
National Institute of Standards and Technology (NIST), National Telecommunications
and Information Administration (NTIA), and Cybersecurity and Infrastructure Security

1

3 Introduction

Agency (CISA) have published requirements and guidance for the generation and use of
an SBOMs [36, 43, 44].

Additionally, the European Union introduced the need for SBOMs as part of the CRA.
The CRA focuses on manufacturers and retailers of products that incorporate digital
elements, such as hardware, software, and IoT devices. Under the CRA, manufacturers
are required to identify and document vulnerabilities and components contained in
their products in a machine-readable format. The European Union (EU), with the CRA,
implements strategic legislation aimed at enhancing transparency and accountability in
the manufacturing and distribution of digital products. This effort is to protect consumers
and companies in the European market. [11, 12]

While software vendors are motivated to comply with government regulations to secure
their government contracts, open-source projects have no incentive to comply with such
compliance regulations. As a result, the vast majority of open-source projects do not
supply their builds with an SBOM. To address this issue, the OpenSSF initiated the SBOM-
Everywhere project as part of its Open Source Software Security Mobilization Plan. The
goal of this working group is to focus on tools and advocacy efforts to remove barriers for
the generation and consumption of SBOMs in open-source projects. [13, 40]

Although there are already a lot of tools and standards available for producing SBOMs,
three different standards are emerging for representing SBOMs in a machine-readable
format.

The first widely known standard is the SPDX, which is standardized in ISO/IEC
5962:2021 [2] and maintained by the SPDX working group under the umbrella of the
Linux Foundation.

The second widely used standard is the CycloneDX format, which is maintained by the
Open Worldwide Application Security Project (OWASP) foundation [15].

The third related standard is the Software Identifier (SWID), which is standardized
in ISO 19770-2:2015 [1] and focuses on the lifecycle management of software to enable
effective asset management in large infrastructures. Although SPDX and CycloneDX were
designed with the generation of SBOMs in mind, the SWID standard could achieve the
requirements of an SBOM, but it was not designed with the requirements of an SBOM in
mind. At the time of writing, there is a lack of proper tooling to generate and consume
SWID as an SBOM efficiently.

3.1 Motivation

Although the importance of SBOMs for asset management regarding security and licenses
as a risk management measure is clear, the technology is still relatively new. Thus, the
quality of produced SBOMs varies drastically. While there are tools such as the National
Telecommunications and Information Administration (NTIA) Conformance Checker [35],
the SBOM Scorecard Project [31] and the SBOMQS Quality metrics [32], these tools only
check an SBOM for formal correctness, validating if specific fields are initialized. This is
done with the background of the minimum elements for an SBOM, which were set by the
NTIA on behalf of the Whitehouse EO [36]. However, they cannot check the SBOM on a

2

3 Introduction

content level. Therefore, an automatically generated SBOM for a complex project structure
might not detect dependencies or miss out on aspects of the project’s overall complexity.
Additionally, while some of the required fields of such quality metrics are meaningful for
SBOMs related to commercially supplied and supported software by software vendors,
applying such fields to open-source projects might be challenging.

3.2 Related Work

The necessity of SBOMs for tracking the usage of open-source projects is highlighted by
Hatta in his paper [27]. He elucidates that numerous vital and foundational open-source
projects are often developed and maintained by hobbyists, implying that professional-
level development practices cannot always be expected. Hatta states that while Linus’s
Law predicts that bugs in code will vanish if just enough eyeballs look at it, the amount of
eyeballs needs to be secured to ensure this advantage of open source.

However, vulnerabilities in open-source supply chains are not limited to mere bugs with
security ramifications. There also exists the threat of attackers attempting to compromise
a project to inject malware into downstream applications. Ohm et al. [37] demonstrate
174 instances of attacks on open-source software during the period from 2015 to 2019.
Their findings indicate that attackers exploit package repositories as an effective and
scalable platform for malware distribution.

While the idea of increasing SBOM generation in open-source projects is commendable,
its implementation poses significant challenges. In 2020, the Linux Foundation conducted
a contributors survey, which did not include SBOMs specifically. Nonetheless, the survey’s
overall statistics revealed that the adoption of security policies and the overall security
posture is often not prioritized in an open-source project. [39]

In January 2022, the Linux Foundation conducted a survey to assess the adoption and
organizational readiness for SBOMs. This survey included 412 organizations worldwide.
It highlighted SBOMs, globally unique software identifiers, and component verification
via reproducible builds as critical elements in securing the software supply chain. The
survey revealed that over 90% of participants had initiated work on SBOMs. While a high
commitment to producing SBOMs was observed, numerous questions remain about the
value SBOMs offer to consumers, their production and consumption methods, and the
applicable standards [28].

Xia et al. conducted a survey in February 2023 on the present adoption of SBOMs and
the challenges that lie ahead. Their findings indicated that the quality of SBOMs remains
a concern, along with the lack of proper tooling to consume and share SBOMs.[49]

A blog article from March 2023 by the OpenSSF provides guidelines for crafting high-
quality SBOMs [33]. It discusses methods for assessing SBOMs quality and emphasizes
that most SBOMs fail to meet the minimum standards set by the NTIA. Their analysis
of 3000 SBOMs found that less than 1% complied with these standards. The article
also highlights the limited availability of SBOMs for research, citing the SBOM-shelter
project on Github as a notable source. Managed by ChainGuard, this project features 52
real-world SBOMs and over 3000 laboratory-generated SBOMs from container images [7].

3

3 Introduction

Critics argue that simply increasing the quantity of SBOMs is insufficient and does not
necessarily improve the overall quality of SBOMs. John Meyers of ChainGuard published
two articles [3, 4] on this issue, describing it as a chicken-and-egg problem in relation to
the generation and consumption of SBOMs. While the initial problem of generating the
first SBOMs in open-source projects seems to have been addressed, a new issue has arisen.
Meyers refers to it as “SBOM chickens laying bad SBOM eggs” [4].

Shortly before submitting this thesis, Zhao et al. published a paper evaluating Software
Composition Analysis (SCA) tools in Java. It introduces an Evaluation Model for assessing
SCA tools, considering their dependency-resolving capabilities and effectiveness. The
study involves qualitative and quantitative evaluations, examining six SCA tools across
different aspects like tool capabilities, dependency detection accuracy, and vulnerability
accuracy. Key findings include the varying support levels for dependency management
features and the need for improvements in SCA tools. [50]

3.3 Research Goals

The conducted research in this field leaves a gap in terms of evaluating the quality of the
generated SBOMs regarding the completeness of SBOMs. Therefore, this paper introduces
primary research on a comparison of the results of different tools for the generation of
SBOMs in different stages of the software lifecycle regarding the completeness of the
detected dependencies.

While there is some research on the quality of SBOMs, it mostly focuses on compliance
with the schematics of the defined data structure or the minimum elements defined
by regulatory authorities. However, at the time of writing, there is no research that
examines the quality of generated SBOMs measured at the real complexity of included
dependencies.

4

4 SBOM Standards

The necessity for a SBOM standard originates from the need to exchange information
generated by SCA. The increasing integration of open-source software within the software
development lifecycle has highlighted the importance of tracking implemented software
components. This need has become more critical with the widespread use of package
managers such as Java’s Maven, JavaScript’s NPM, and Python’s Pip. However, mere
scanning was insufficient. The outcomes of SCA required documentation in a standardized
format, ensuring ease of exchange and suitability for automated processing. Consequently,
several standards were proposed, with the following three gaining recognition by the
American government due to EO 14028 [30], by the NTIA [36].

This chapter provides an exploration of SBOM standards. The different sections in of
the SPDX and CycloneDX standard will be introduced and there use cases are presented.
Also a brief introduction to the SWID standard is provided.

4.1 Software Package Data Exchange

SPDX is a standard initially specified in February 2010 by the FOSSBazaar working group
under the Linux Foundation. It has since evolved into an independent project, yet remains
under the umbrella of the Linux Foundation. In 2021, SPDX was formalized as an ISO
standard, designated ISO/IEC 5962:2021 [2, 46].

SPDX supports a diverse array of data formats, including JSON, XML, YAML, tag:value,
and RDF. These file formats are interoperable, allowing for seamless conversion between
them. Additionally, SPDX provides tools for the validation and conversion of different file
formats [45].

The current iteration of the SPDX standard, version 2.3, comprises several components.
The information provided herein pertains to the publicly available SPDX specification,
version 2.3 [46].

• SPDX Document Creation Information
• Package Information
• File Information
• Snipped Information
• Other Licensing Information Detected
• Relationship between SPDX Elements
• Annotation Information
• Review Information

SPDX Document Creation Information

The Document Creation Information is the only mandatory section in the SPDX specifica-
tion. It encompasses details about the document, such as the SPDX version number, the
creator, the creation date, external and internal document identifiers, document name,

5

4 SBOM Standards

and namespace. Additionally, it includes fields for creator and document comments, as
well as the data license field. This field specifies the license of the SBOM document itself.
By design, it is set to the Creative Commons CC0 1.0 Universal license to ensure that the
document can be freely reused.

Package Information

Essential elements in the SPDX package information include the package name, version,
identifier, file name, supplier, originator, download location, and analysis status of package
files. Additionally, the document should include the package verification code, checksums,
homepage, source information, concluded license, and all license information from the
package files. The declared license field, comments on the license, copyright text, summary
description, detailed description, package comment, external reference field, and external
reference comment should also be included. Furthermore, the package attribution text
field, primary package purpose field, release date, build date, and a valid until date are
part to the package information in SPDX.

File Information

Additionally, the SPDX specification can include a list of files associated with an applica-
tion. This list comprises filenames, unique identifiers, file types, checksums, concluded
license fields, comments, copyright texts, contributors, attributions, and file dependencies.

Snippet Information

Another use case in SPDX involves snippets. These are employed to incorporate additional
licensing information that may arise from external code or intellectual property utilized
in the software. They can also be used to encapsulate security-related information, such as
CPE data. Snippets feature identifier fields, byte and line range fields, and include details
on licenses and copyrights. Additionally, they provide space for comments, attributions,
and other relevant information.

Other Licensing Information Detected

The SPDX SBOM may also include additional information about licensing situations. This
facilitates the introduction of detailed information related to licensing. It can encompass
additional license texts and license identifiers. Furthermore, these elements can be cross-
referenced with other components or include supplementary comments.

Relationship between SPDX Elements

SPDX also allows for explicitly mapping relationships between elements within the SPDX
format. These relationships can be annotated with comments to clarify their relevance
and purpose for potential consumers of the SPDX SBOM. So, the SPDX document can
represent a dependency structure and the relationship between the packages in a graph-
like structure. The structure can also reference other documented assets like files, snippets,

6

4 SBOM Standards

or other SPDX documents. The relationship graph adds extra complexity because the
type of relationship defines the direction in which the entry is pointed in the relationship
graph. So, a relationship graph can be made up of relationships pointing in different
directions.

Annotation Information

It is possible to annotate the document with additional information in cases where modi-
fications were made or supplementary details were included. This annotation includes
the name of the Annotator, the date of annotation, the type of annotation (e.g., review or
other), an annotation identifier, and a field for additional comments.

Review Information

Initially, this section was intended to contain details regarding individuals or organizations
that reviewed or approved the SPDX document. However, this section was deprecated in
Version 2.0. It previously included information about the reviewer, the review date, and a
review comment. Such information is now incorporated into the annotation information.

4.2 CycloneDX

CycloneDX is a standard developed and maintained by the OWASP Foundation. Initially
designed and prototyped in 2017 as part of the OWASP Dependency-Track project, it has
been continuously updated since then. The most recent version at the time of writing is
the CycloneDX 1.4 standard, released in June 2023. Its primary intended use cases include
vulnerability detection, license compliance, and analysis of outdated components. [15]
All subsequent information pertains to the CycloneDX v1.5 specification reference. [14]

CycloneDX supports XML, JSON, and Protocol Buffers as data formats for CycloneDX.
[15]

CycloneDX requires the inclusion of the bomFormat, the specification version, and the
SBOM-version of the current project. Additionally, it is recommended to assign a serial
number in the form of a UUID to each CycloneDX SBOM.

Metadata

The metadata section may include information about the SBOM, such as the time of cre-
ation, tools used to generate the SBOM, authors, and the components the SBOM describes.
It may also detail the institution responsible for manufacturing the described software
and license information associated with the SBOM. Additionally, further properties can
be added using a key-value pattern.

Components

The Components section aims to enumerate all related software and hardware elements.
For adding a component, it’s mandatory to define its type. These types include application,

7

4 SBOM Standards

framework, library, container, operating system, device, firmware, or file. Each component
must have a basic name, represented as a string. Optionally, in CycloneDX, a component
may include additional details such as mime-type, supplier, author, publisher, product
group name, version, an extended description, and references to other SBOM components.
Additional attributes can encompass hashes, licenses, copyright information, Common
Platform Enumeration (CPE), Package Uniform Resource Locator (PURL), and an SWID.
External references, evidence from extraction or analysis, release notes, and properties
added via a key-value pattern are also permissible. Moreover, Components facilitate
documenting supply chain information through pedigree objects.

Services

The Services section is designed to document details about microservices at the network
layer, as well as services in intra-process communication. Each service requires a name,
specified as a string. Additional information can include the provider’s details, group
name, version, and a detailed description of the service. Furthermore, endpoints for
service accessibility, authentication requirements, and cross-trust zone or boundary cross-
ing details are essential. Data classification information should cover the flow of data,
specifying whether it is inbound, outbound, bi-directional, or of unknown direction,
along with a string-based classification of data sensitivity. Other vital details include
license information, external references, related or included services, release notes, and
properties presented as key-value pairs.

External References

CycloneDX enables the creator of a SBOM to add external references to the document for
information that may be relevant but is not included in the SBOM. An external reference
requires a URL and the type of reference, which is part of an enumeration. Additionally,
it can include comments and hashes of the external reference, if applicable.

Dependencies

Dependencies in CycloneDX consist of a mandatory reference to a component that de-
scribes the dependency. They also include a list containing identifiers for components
upon which the described component depends.

Compositions

A composition element is used to describe how components are assembled or com-
posed. This element requires information about the type of aggregation regarding
the completeness of the described relationships, such as complete, incomplete, incom-
plete_first_party_only, incomplete_third_party_only, unknown, or not_specified. Ad-
ditionally, the composition can include a list of references to identify further resources
associated with the assembly.

8

4 SBOM Standards

Vulnerabilities

If known at the time of generation, or if the SBOM is enriched at a later stage of its
lifecycle, known vulnerabilities can be integrated into the SBOM. A vulnerability en-
try may include references to other elements within the SBOM, an identifier such as a
Common Vulnerabilities and Exposures (CVE) number, and the source that published
the vulnerability, including its URL and name. It can also encompass links to related
vulnerabilities, rating details like severity, attack vector, or scores, associated Common
Weakness Enumeration (CWE) identifiers, and a comprehensive description. Additional
information may cover detailed insights into the vulnerability, recommendations for reme-
diation or mitigation, related advisories published online, the date of the vulnerability’s
publication, updates to the information, acknowledgments to organizations or individuals
such as researchers who discovered the vulnerability, and tools used for identification,
confirmation, or scoring. Further, it may include an analysis or impact assessment of
exploitability, the components or services impacted by the vulnerability, and additional
properties presented in a key-value pair format.

Signatures

CycloneDX allows users to sign either the entire document or specific sections of it using
the JSON Signature Format (JSF).

4.3 SWID

The SWID tag is defined in the ISO/IEC 19770-2:2015, which is part of the ISO/IEC 19770
family of standards. These standards provide a comprehensive framework for Information
Technology Asset Management (ITAM). They are designed to assist organizations in
effectively managing their software and hardware assets. The ISO 19770 family addresses
various aspects of software management, including software identification, entitlement,
and inventory, in an automated fashion. [1]

Therefore, ISO/IEC 19770-2:2015 is not solely focused on SBOMs but also introduces
standardization across the entire lifecycle of a software product. SWIDs are intended to
be used by the developers who create them and should then be passed along to licensors,
packagers, distributors, and consumers. There, they should be utilized for purposes
such as licensing, security, dependency tracking, and asset management. The standard
delineates how SWIDs should be managed in all these phases, including how they should
be added, updated, or removed from the devices on which the software is installed. [1]

The SWID itself is an XML file, defined by a XSD schema outlined in the standard.
Although the standard is recognized by the NTIA for use as an SBOM, it was not originally
designed for this specific use case. For instance, the minimum data requirements set
by the SWID standard does not mandate the inclusion of information pertaining to the
technical composition of utilized packages or third-party licenses. It only necessitates
the provision of the software’s Name and TagID, along with the Role, RegID, and Name
of the tag creator. However, the SWID specification acknowledges the broad variety of

9

4 SBOM Standards

potential applications for SWIDs. Consequently, the schema offers numerous additional
fields for optional use. SWID tags can facilitate the listing of packages and dependencies
of a software product through the incorporation of <Payload> and <Evidence> elements
in their primary tags. [1, 48]

However, CycloneDX and SPDX are specifically tailored for use as an SBOM and are
backed by OWASP and the Linux Foundation, respectively. Therefore, no known tooling
currently implements SWID as a format to generate an SBOM.

10

5 Methodology

The following section describes the scope of the thesis. It describes the selection of tools
and the assessment process of the SBOM generation, conversion, and analysis. It also
clarifies the limitations of this thesis and outlines guardrails for its scope.

5.1 Selection of Open Source Projects

An analysis was conducted on the most commonly used Docker Containers to select subject
projects. For this, containers tagged on DockerHub as Docker official image are considered.
Also, some of the Docker Sponsored Open Source Software images were considered with
a focus on images provided by the software developers. Not all Docker Sponsored Open
Source Software images were considered. The focus lies on images provided by the software
developers, not images provided by third-party providers. Based on this, reference
repositories on GitHub related solely to these Docker containers were selected. However,
this is only applicable if a single repository is related to the Docker container and is hosted
on GitHub. From the chosen GitHub projects, those that also manage their releases on
GitHub were added to the release category. This limitation was implemented to facilitate
automated data analysis based on unified APIs that can be implemented for automation.

5.2 Selection of SBOM Generators

A generator was considered eligible for this study if it complied with the following criteria
to define a scope for this thesis:

• It must output results in one of the specified standards: SPDX or CycloneDX.
• It should be publicly available under a license that permits free usage in open-source

projects.
• It must support a range of common programming languages, and not be specialized

in only one language.
• It must be under active development or maintenance. Projects that were archived,

declared deprecated, or saw no active development in the past two years were not
considered eligible for this study.

To identify eligible SBOM generators, common search engines were utilized. Addition-
ally, the publications of the OpenSSF Tooling working group were consulted, where a
collaborative effort to survey current tools is undertaken by experts and peers in this field
[41].

All identified tools matching the criteria were considered; however, those based on a
tool already investigated in this analysis are not investigated in this thesis. Assuming that
the results would be similar to the integrated tool to generate the SBOM.

The following tools were identified and deemed eligible:

11

5 Methodology

• Syft [18]
• Trivy [17]
• CdxGen [19]
• Microsoft SBOM Tool (MST) [21]
• ScanCode Toolkit [23]
• Tern [24]
• Github Dependency Graph (GDG) [20]

While the Snyk CLI offers a wide variety of free services, including the generation of
SBOMs, it requires a user account and user registration. The terms of service for Snyk
specifically prohibit the use of their services for any form of competitive benchmarking
[42]. For this reason, Snyk was not included in this study.

While SPDX and CycloneDX enjoy support of a wide variety of different tools, SWID
is not supported by any of the selected generators. Therefore, SWID was excluded from
further investigation.

Derived from the selected tooling, the most commonly supported phases in the software
development lifecycle were identified. On one hand, most tools support the analysis of
a given directory, which can contain source code or build outputs such as release files.
Another common feature is the ability to scan a container image to generate a SBOM.
Based on these common features, three phases were identified.

The sources phase refers to a SBOM based on the source code of a sample project provided
by GitHub. The release phase refers to a SBOM based on the release files of a sample project
provided by projects that manage their releases with the corresponding GitHub feature.
The container phase refers to a SBOM based on the container image of a sample project
provided by DockerHub.

5.3 SBOM Quality Assessment

For the purposes of this study, a system was developed to automate the generation, storage,
and analysis of SBOM data. The system incorporates various components, each of which
is described in the subsequent sections.

5.3.1 Generation

The SBOMs were generated within a custom Docker container, which was based on Arch
Linux. This container was configured to install all necessary tools for SBOMs creation.
To minimize storage and bandwidth requirements - and to avoid exceeding rate limits
of API endpoints - all tools were consolidated into a single container. Resources were
fetched from the API and subsequently, SBOMs were generated sequentially for each
project. Although SBOMs generation for individual projects was not parallelized, the
processing of different projects was highly parallelized to accommodate the large sample
size within a reasonable time frame.

The generation tooling was encapsulated in the Docker container alongside a SpringBoot
Java application, which orchestrated the generation process and managed data storage.

12

5 Methodology

Each generation operation was configured with a maximum timeout of one hour. Gener-
ation logs were preserved for subsequent analysis and were recorded using Asciinema,
a tool designed to capture and replay terminal sessions. The SBOMs for SPDX and Cy-
cloneDX were produced in JSON format and stored in a PostgreSQL database as JSON
blobs. If a generator only supports one of the two investigated standards, the SBOMs gets
converted accordingly. If a generator was capable of producing SBOMs in both formats,
generation was performed in each format accordingly.

5.3.2 Conversion of SBOMs

Not all tools evaluated in this study are capable of generating SBOMs in both the SPDX
and CycloneDX file formats. To facilitate a comparative analysis of the two formats, it was
necessary to convert the SBOMs into the format that was not originally produced by the
tool. For instance, CdxGen and ScanCode produce SBOMs exclusively in the CycloneDX
format, thus requiring conversion to SPDX. Similarly, MST and GDG produce SBOMs
solely in the SPDX format, necessitating conversion to CycloneDX.

Several tools were considered for the conversion of SBOM between CycloneDX and
SPDX. The SPDX project provides a Java library with command-line utility to convert
CycloneDX SBOMs to SPDX, but it is not able to convert them vice versa [9]. CycloneDX
offers the CycloneDx-CLI, which is capable of converting SPDX in both directions [10]. Syft
also offers a tool within their CLI for bidirectional SBOM conversion [18]. Additionally,
a project from bom-squad facilitates conversion between SPDX and CycloneDX in both
directions [8].

After a series of tests, the Syft SBOM conversion tool was selected for its accurate value
mapping and stability in processing data.

Nonetheless, it should be noted that the conversion process may result in less accurate
data, or in some instances, the inclusion of empty values by the conversion tool. Con-
sequently, all metrics derived from converted data will be marked with an asterisk ’*’
henceforth in this paper, indicating the potential bias in the sample data du to conversion
of the SBOMs with third party tooling.

A comprehensive examination of the various converters exceeded the scope of this study.
Therefore, it has been published as an blog post to allow for a full understanding of the
tool selection process. [5]

5.3.3 Interacting with SBOM Data

To facilitate the analysis and interaction with the SBOMs, a web-based tool was developed
for comparing and engaging with the SBOMs data. This tool was constructed using
Vue.js 3 for the front end and a SpringBoot Java framework for the back end, providing a
REST API. It was designed to offer straightforward access to the metadata of the sampled
generations and the SBOMs themselves.

The primary aim was to grant insights into the SBOMs generated, particularly con-
cerning the additional data collected. A project overview feature was introduced to track

13

5 Methodology

which generators succeeded in producing SBOMs at various stages, and to provide a
preliminary assessment of the data quality.

Additionally, the tool incorporated a project-specific view for comparing the SBOMs
created for a single project. Three distinct viewing modes were established:

First, a Basic Insights view was devised to facilitate an initial examination of the data
and to verify compliance with the NTIA minimum elements.

Second, a Dependencies view was constructed to align and display the declared depen-
dencies from the SBOMs in a tabular format, enabling an evaluation of intersections in
detected dependencies across different SBOMs. This view allows for the utilization of
various identifiers as references. In SPDX, the External Reference Locator and the SPDX
name was used for mapping intersecting dependencies. In CycloneDx, the PURL or the
dependency name was used. All identifiers could be used with or without versioning
of the dependencies. Furthermore, a physical simulation (force plot) was integrated to
visually represent the dependencies identified by different SBOMs and how intersections
form between them.

Lastly, a License Information view was introduced to provide insights on the extent of
license data coverage within an SBOM, highlighting the different license-related fields.

listings amssymb

14

6 SBOM Generators

The various SBOM generators implemented exhibit distinctive features for diverse applica-
tions. Some are designed for exclusive phases of the software development lifecycle, while
others incorporate specialized features that serve as unique selling propositions. These
differences present challenges when attempting to conduct a general comparison among
them. The generators distinguish themselves based on the programming languages they
support, compatibility with certain build tools or package managers, supported platforms,
or their capabilities in scanning specific assets such as virtual machine images or AWS
accounts.

6.1 Generator Specifications

Table 6.1 outlines some general specifications for the generators under consideration.
Notably, the GDG licensing and programming language information are not available.
While the service is free to the Github community, Github does not share the source code
publicly. Furthermore, the table reveals that all generators except CdxGen can produce
SPDX-formatted SBOMs, and five out of the seven generators are capable of producing
CycloneDX SBOMs.

Generator Spesifications
Generator License Language Backed by SPDX CDX
CdxGen Apache-2.0 JavaScript OWASP × X
Syft Apache-2.0 Go Anchore X X
MST MIT C# Microsoft X ×
Trivy Apache-2.0 Go Aquasecurity X X
Tern BSD-2-Clause Python Community X X
ScanCode Apache-2.0 Python nexB X X
GDG -/– -/– Github X ×

Table 6.1: Generator Spesifications

In Table 6.2 a list of supported programming languages for each SBOM generator
is conducted, derived from the corresponding documentation of each generator. It is
important to note that this list does not fully represent the build tool compatibility within
those languages. For instance, the Gitlab Dependency Graph supports Java when utilizing
Maven by reading the project’s pom.xml. However, it does not extend support to Gradle,
which introduces additional complexity with Groovy or Kotlin scripts [20]. Furthermore,
the generator Tern is excluded from this list as it does not analyze programming languages
per se. Tern is designed to scan container images for installed packages. While Tern’s
functionality can be enhanced with the ScanCode-toolkit to perform package scanning,
this integration is not included in the study since the ScanCode-toolkit is independently
evaluated. While ScanCode documents the capability to generate SPDX documents, it is

15

6 SBOM Generators

limited to producing SPDX output in RDF or Tag-Value format [22]. This limitation posed
a challenge for this study, as converting the RDF or Tag-Value output to a JSON SPDX file
for further analysis was difficult. Therefore, ScanCode was employed solely to generate a
CycloneDX file, which was subsequently converted to SPDX using a third-party tool.

Supported Programming Languages¹
Language CdxGen Syft MST Trivy ScanCode GDG
C X X × X X ×
C++ X X × X X X
Clojure X × × × × ×
Dart X X × X X X
Elixir X X × X × ×
Erlang × X × × × ×
Go X X X X X ×
Haskell X X × × × ×
Haxe × × × × X ×
Java X X X X X X
JavaScript X X X X X X
.Net X X X X X X
Nix × X × × × ×
Ocaml × × × × X ×
ObjectiveC × X X × X ×
Perl × × × × X ×
PHP X X × X X X
Python X X X X X X
R × × × × X ×
Ruby X X X X X X
Rust X X X X X X
Swift X X X X X X

¹list is an approximation based on the provided documentation

Table 6.2: Supported languages by Generator

6.2 Generation Summary

Table 6.3 provides a comprehensive account of all SBOMs generated using various genera-
tors across different phases. The SBOMs were produced based on a sample of 205 subject
projects for the container phase, 174 projects for the source phase, and 117 projects for the
release phase. Several tools encountered crashes during the attempt to generate an SBOM
or hit a one-hour timeout that halted the generation process. Notably, Tern experienced
over 28 crashes.

Upon examining the generated SBOMs, the quantity of enumerated dependencies is cat-
egorized into three groups: SBOMs containing at least one dependency, those containing
at least 10 dependencies, and those with at least 100 dependencies. While the container

16

6 SBOM Generators

Generation Summery
Generator All sam-

ples
Successfull Failed 0<

Depen-
dencies

10<
Depen-
dencies

100<
Depen-
dencies

CdxGen 205 202 3 186 182 158
MST 205 205 0 205 159 122

C
on

ta
in

er

Syft 205 204 1 196 193 170
Tern 205 177 28 177 164 145
Trivy 205 204 1 204 194 167
CdxGen 117 117 0 5 2 0
MST 117 117 0 117 0 0

R
el

ea
se

Syft 117 117 0 19 10 3
Trivy 117 116 1 116 0 0
CdxGen 174 163 11 146 113 73
GDG 174 171 3 171 126 75

So
u

rc
e

MST 174 174 0 174 99 64
ScanCode 174 162 12 126 33 10
Syft 174 174 0 118 103 74
Trivy 174 168 6 168 89 58

Table 6.3: Generation Summary

and source phases both have SBOMs in all of these categories, the release phase SBOMs
are notable for predominantly containing only one or no enumerated dependencies.

A detailed description of the generation process of each generator and phase is provided
in the Appendix.

The execution time for the generating of all SBOMs was documented in table 6.4. The
generation process was aborted after 60 minutes if not completed. This metric is not
applicable to the GDG SBOMs, as they were obtained from the GitHub API rather than
being generated during the study.

In instances of timeouts, Tern experienced this issue in two separate cases. During
the sources phase, timeouts impacted CdxGen on two occasions. ScanCode encountered
timeouts in 12 instances. Trivy faced a timeout once in the release phase and twice in the
sources phase.

Generator Spesifications
Mode Syft Trivy MST CdxGen ScanCode Tern
Container 50,0s 102,2s 87,1s 223,4s -/– 333,7s
Release 12,0s 148,6s 13,9s 8,9s -/– -/–
Source 24,9s 97,0s 30,6s 235,3s 577,5s -/–

Table 6.4: Generator Average Execution Time

It is important to note that CdxGen, GDG, and MST generators support output in only
one of the investigated SBOMs standards. Consequently, the SBOMs were converted

17

6 SBOM Generators

to the missing format where necessary. Due to issues transforming the RDF-SPDX file
generated by ScanCode to a JSON-SPDX file the CycloneDX was thus converted to SPDX
as well. Trivy and Tern support output in both SBOMs formats, but only sequentially;
hence, generation was performed twice, a factor included in the average generation time
documented in Table 6.4. In contrast, Syft is capable of generating outputs in multiple
formats simultaneously. Therefore, the generation time listed in Table 6.4 corresponds to
the total time taken to produce an SBOMs in both the SPDX and CycloneDX formats.

18

7 SBOM Data Assessment

After generating the samples of SBOMs, the subsequent step involves assessing their data
quality. This assessment can be conducted across various dimensions and is divided into
three parts. The first part presents the overall data enrichment of the generated SBOMs,
referring to the question: how much information has been added by the generators to
facilitate the different features of the SPDX and CycloneDX specifications. The second
part applies the minimum elements metrics to these SBOMs. The third part will discuss
the results from tools introduced to evaluate the quality of the generated SBOMs.

7.1 SBOM Overall Enrichment

While the different SBOM formats offer a rich set of use cases, they are able to reflect
with their schema structure, not all of them are enriched with information by the SBOM
generators. The Tables 7.1 and 7.2 show a count of different features of the different SBOM
types and which generators made use of them in which phase. Table 6.3 can be used as a
reference to the results.

7.1.1 CycloneDX Overall Enrichment

Every CycloneDX SBOM sample includes fundamental data such as bom-format, spec-
version, serial number, version, and metadata. Support for component listing is uniformly
provided by all generators examined. Nevertheless, most generators face challenges
when analyzing the release phase. Only a select few, specifically CdxGen and Trivy, offer
insights into the dependency structure and how they are interconnected. A lot of use
cases, such as signature addition, service listing, external references, compositions, vulnerability
documentation, annotations, formulations, or property inclusions are not utilized by any of
the generators under investigation.

7.1.2 SPDX Overall Enrichment

All generated SPDX samples contain essential elements such as the SPDX Identifier
(SPDXID), creation information, Data License, Name, and the SPDX specification version.
MST, GDG, and Tern are unique in including DocumentDescribes elements. Although all
generators produce samples with packaging information, the quality and detail of the
package listings vary. Only CdxGen, Syft, and Tern augment these with external licensing
data. Syft and Trivy are distinguished during the container phase by their inclusion of
data on additional files in the SBOM. MST displays a singular instance of additional file
information, but it is not commonly employed. With the exception of GDG, all generators
facilitate the depiction of relationships among the resources detailed in the SBOM. Tern is
the sole generator that appends comments to the SBOMs it produces. However, segments
such as Annotations, External Document References, Reviews, or Snippets have not been
utilized by any of the generators.

19

7 SBOM Data Assessment

CycloneDX overall enrichment
Generator bom

Format
Spec
Version

Serial-
number

Version Meta-
data

Compo-
nents

Depen-
dencies

CdxGen 202 202 202 202 202 186 1
MST* 205 205 205 205 205 205 0

C
on

ta
in

er

Syft 204 204 204 204 204 198 0
Tern 178 178 178 178 178 162 0
Trivy 202 202 202 202 202 193 202
CdxGen 117 117 117 117 117 5 0
MST* 117 117 117 117 117 117 0

R
el

ea
se

Syft 117 117 117 117 117 19 0
Trivy 117 117 117 117 117 0 117
CdxGen 163 163 163 163 163 146 88
GDG* 171 171 171 171 171 171 0

So
u

rc
e

MST* 174 174 174 174 174 174 0
ScanCode 162 162 162 162 162 126 0
Syft 174 174 174 174 174 118 0
Trivy 170 170 170 170 170 101 170

Not all categories listed

Table 7.1: CyclonoeDx overall enrichment

SPDX overall enrichment

Generator

SP
D

X
ID

C
om

m
en

t

C
re

at
io

n
-

in
fo

D
at

a-
li

ce
ns

e
N

am
e

Sp
d

x-
V

er
si

on
D

oc
u

m
en

t-
na

m
es

p
ac

e

E
xt

er
n

al
-

L
ic

en
si

ng
D

oc
u

m
en

t-
D

es
cr

ib
es

Pa
ck

ag
es

Fi
le

s

R
el

at
io

n
-

sh
ip

s

CdxGen* 202 0 202 202 202 202 202 25 0 186 0 202
MST 205 0 205 205 205 205 205 0 205 205 0 205

C
on

ta
in

er

Syft 204 0 204 204 204 204 204 183 0 196 196 204
Tern 177 177 177 177 177 177 177 158 177 177 0 177
Trivy 202 0 202 202 202 202 202 0 0 202 81 202
CdxGen* 117 0 117 117 117 117 117 0 0 5 0 117
MST 117 0 117 117 117 117 117 0 117 117 0 117

R
el

ea
se

Syft 117 0 117 117 117 117 117 12 0 19 19 117
Trivy 116 0 116 116 116 116 116 0 0 116 0 116
CdxGen* 163 0 163 163 163 163 163 43 0 146 0 163
GDG 171 0 171 171 171 171 171 0 171 171 0 0

So
u

rc
e

MST 174 0 174 174 174 174 174 0 174 174 1 174
ScanCode* 162 0 162 162 162 162 162 0 0 126 0 162
Syft 174 0 174 174 174 174 174 20 0 118 118 174
Trivy 168 0 168 168 168 168 168 0 0 168 0 168

Not all categories listed

Table 7.2: SPDX overall enrichment

20

7 SBOM Data Assessment

7.2 SBOM Schema Compliance

As indicated in Table 9.4, all generated SBOMs include a version number; however, there
is variation in the specific SBOM version implemented by different tools. At the time of
writing, version 2.3 represents the latest release of the SPDX spesification, and version
1.4 is the most recent CycloneDX specification version. Notably, CycloneDX version 1.5
was released very recently at the time of writing. Consequently, its adoption is still on the
move.

Only ScanCode and Tern continue to utilize older versions of their respective specifi-
cations. In contrast, all other evaluated tools support recent versions of either the SPDX
or CycloneDX specifications. Notably, CdxGen and Trivy have already adopted the new
CycloneDX 1.5 specification. However, for the purpose of converting CdxGen samples to
the SPDX format, it was necessary to pin the specification version to 1.4 for the CdxGen
SBOM generator, so the samples could be converted to SPDX.

SPDX CycloneDX
Generator Version Invalid Version Invalid
CdxGen 2.3* 0 1.4 3
GDG 2.3 0 1.4* 0
MST 2.2 0 1.4* 0
ScanCode 2.3* 0 1.3 126
Syft 2.3 0 1.4 0
Tern 2.2 0 1.3 29
Trivy 2.3 0 1.5 209

Table 7.3: Version coverage

To gain an initial understanding of the validity of the generated data, it was validated
against the schema files provided by SPDX and CycloneDX for the respective versions.
This process offers insights into whether the standards are implemented correctly, thereby
allowing the expectation that other tools could successfully consume the SBOMs.

Upon validating all SPDX samples against the respective versions of the SPDX schemas
for versions 2.2 and 2.3, no errors were found in any of the SBOMs.

However, the results were more varied when examining the CycloneDX samples. Only
Syft managed to generate all CycloneDX samples without producing any invalid files.

A total of 209 CycloneDX samples generated by Trivy were found invalid when validated
against the CycloneDX Schema version 1.5. All the problematic SBOMs generated by Trivy
failed during an error matching the exact instance, describing the license schema.

CdxGen produced 3 invalid SBOMs. Two of these were due to instances of properties
not allowed in the file. The third was related to duplicate elements in the dependency
relationship description.

When validating the CycloneDX samples generated by Tern against the CycloneDX
schema version 1.3, 29 SBOMs were identified as invalid. All were disputed due to
duplicate elements in the component section of the SBOMs.

21

7 SBOM Data Assessment

ScanCode produced 126 SBOMs that were found invalid validating against the Cy-
cloneDX schema version 1.3. All of the invalid SBOMs were related to uninitialized
elements that should be represented by a object or a primitive type, but are null in the
SBOM.

While all the identified discrepancies are errors in terms of conformity with the re-
spective schema, none rendered the SBOMs unusable for further processing in this study.
However, it is noteworthy that ScanCode also produced an invalid metadata properties
object, rendering it incompatible for use with other tools, for instance, in converting the
SBOMs from CycloneDX to SPDX. This metadata object was fixed before conversion from
SPDX to CycloneDx.

7.3 Current Quality Metricses

To assess the quality of a SBOM, it is necessary to define a metrics that can measure
the quality of the SBOM. For this reason, several of the currently known metrics are
introduced to assess an SBOM. The NTIA has published a set of minimum elements for a
SBOM [36]. Also, tools like the SBOM Scorecard and the SBOMQS project are introduced.

7.3.1 NTIA minimum elements

The NTIA has published a list of minimum elements for SBOMs that are independent of
the SBOM format. These requirements encompass seven distinct data fields. [36]

• Supplier Name refers to the name of the entity, such as a company, project, or
developer, that supplies a component and thereby identifies the supplier.

• Component Name refers to the name given to a component by the supplier.
• Version of the Component refers to an identifier used by the supplier to differenti-

ate between various versions of a software component.
• Other Unique Identifiers refers to additional identifiers that are employed to rec-

ognize the component in build systems, package repositories, or other relevant
databases, such as those pertaining to vulnerabilities or exploits.

• Dependency Relationship delineates the connections with other related compo-
nents that incorporate another component.

• Author of the SBOM Data refers to the name of the individual or organization that
compiled the SBOM.

• Timestamp refers to the date and time when the SBOM was created.

Although the NTIA has defined these requirements without adhering to a technical
specification of any standard, both SPDX and CycloneDX have published mappings that
align the NTIA’s minimum elements with the SPDX [34] and CycloneDx[35] specifications,
respectively (see Table 7.4).

The NTIA minimum elements can be categorized into two different types: fields that
refer to a single entry within the SBOM, such as the author or timestamp, and fields
that relate to components, which may occur multiple times within an SBOM. The latter

22

7 SBOM Data Assessment

NTIA SPDX CycloneDX
Supplier Name bom.packages[].supplier bom.metadata.supplier

bom.components[].supplier
Component Name bom.packages[].name bom.components[].name
Version of Component bom.packages[].versionInfo bom.components[].version
Other Unique Identifiers bom.packages[].SPDXID

bom.documentNamespace
bom.components[].cpe
bom.components[].purl
bom.components[].swid

Dependency relationship bom.relationships[] bom.dependencies[]
Author of the SBOM data bom.creationInfo.creators bom.metadata.authors
Timestamp bom.creationInfo.created bom.metadata.timestamp

Table 7.4: NTIA minimum elements mapping

category includes the supplier name, component name, version of the component, other
unique identifiers, and dependency relationships.

Comparing the alignment of the two standards with the NTIA minimum elements,
it can be argued that CycloneDX sets a higher benchmark than SPDX. Unlike SPDX,
which focuses solely on the package suppliers for each enumerated package in an SBOM,
CycloneDX also considers the supplier of the SBOM itself, but this could also be seen as a
duplicate reagarding the author of the SBOM in the NTIA minimum elements. Moreover,
while SPDX utilizes SPDXID and the documentNamespace of the SBOM, CycloneDX
mandates external identifiers such as PURL, CPE, or SWID to fulfill the requirement of
unique identifiers for each package. Notably, SPDXIDs are internal identifiers that can
be generated randomly, rendering them less useful for external processing outside the
SBOM’s internal scope.

Compliance of SPDX SBOM with NTIA Guidelines

In Table 15.1, the comprehensive coverage of the NTIA minimum elements within the
generated SPDX samples for this project is presented. These requirements are quantified
as the percentage of samples that comply with each specified requirement in the respective
phase and generator.

The inclusion of supplier names within dependencies yields variable results. It is note-
worthy that although Syft does not populate the supplier field in either phase of the
SBOM generation process as per the mapping to the NTIA minimum elements, there is
partial coverage in the originator field which is related to the supplier. According to the
SPDX specification, the package supplier could be a distribution platform like SourceForge,
which may not have a direct relation to the package’s origin. To bridge this discrepancy,
the SPDX standard introduces a package originator field for identifying the individual or
organization from which the package originates. The NTIA defines the Supplier Name as:
“The name of an entity that creates, defines, and identifies components” [36]. Considering
this, one could argue that the originator field aligns more closely with the NTIA criterion
than the supplier field. If we attribute the originator field in Syft’s analysis, it would achieve

23

7 SBOM Data Assessment

a coverage of 64% for container images, 0.5% for release files, and a scant 0.014% for
source code scans, indicating a level of awareness for detecting a supplier consistent with
standards.

All SPDX SBOMs meet the NTIA’s requirements for the SBOM Author. However, it is
essential to recognize that the NTIA’s mapping of SPDX requirements does not refer to a
simple string, but to a complex data structure that can encapsulate various details. The
SPDX specification anticipates a key-value pairing for information pertaining to a Person,
Organization, or Tool. If an SBOM contains any of these details, it satisfies the NTIA
requirements. While all generated SBOMs include the Tools parameter, none provide
the Person parameter. The Organization parameter is absent in the SBOMs from GDG
and Tern. Conversely, Syft and Trivy list their respective organizations, Anchore and
AquaSecurity. MST alone mandates users to specify an organization to produce a SBOM.
CdxGen and ScanCode, which were converted using Syft to the SPDX format, list Syft and
Anchore as the creator due to the conversion. The SPDX specification states: “If the SPDX
document was created on behalf of a company or organization, indicate the entity name.
If the SPDX document was created using a software tool, indicate the name and version
of that tool” [45]. This suggests that the Organization field is intended for the entity that
generated the SBOM, rather than the supplier of the tooling, which should be documented
in a separate field.

In analyzing the coverage of version information, it is evident that some tools strug-
gle to provide version information for their enumerated dependencies. In the release
phase, Trivy does not supply any version information with their package information.
Particularly in the Sources phase, Syft, Trivy, and ScanCode struggle to retrieve license
information. These issues are based on the different approaches to retrieving information
from the sources. Some build systems, like Java’s Gradle, introduce complex mechanisms
to maintain unified versions in complex projects. This complexity makes it difficult to
retrieve version information from a project. Tools like CdxGen benefit from communicat-
ing with the build system API, which can retrieve such information reliably. However,
this comes at the cost of depending on the build tool’s stability; if the build tool crashes,
the information retrieval process also fails. Also the build tool needs to be availible at
the time of SBOM generation. On the other hand, tools like Syft and Trivy implement
their own parsers. They don’t need to rely on the build tools to retrieve this information
and therefore run more stably, but they can’t reflect the complete complexity of the build
system.

The timestamps in all SPDX SBOMs accurately reflect the time of generation or con-
version. Also all SPDX SBOMs enumerate the Component name and a unique identifier
for the components. GDG is the only SBOM generator not providing any dependency
relationship information. This will be further investigated in Chapter 8.

Compliance of CycloneDX SBOMs with NTIA Guidelines

In Table 15.2, the comprehensive coverage of the NTIA minimum elements within the
generated CycloneDX samples for this project is presented. These requirements are

24

7 SBOM Data Assessment

quantified as the percentage of samples that comply with each specified requirement in
the respective phase and generator.

Among the SBOM generators examined, all implemented PURLs as a unique identifier
for their components; however, only Syft incorporated the use of CPE alongside PURL for
component identification. Furthermore, Syft is distinguished by its utilization of SWIDs
to describe the base image of a container, successfully assigning SWIDs to 193 out of 204
scanned images. That the results for the CycloneDX unique identifiers are not achiving a
100% coverage like the SPDX results do might be attributed to the higher bar set by the
mapping of the NTIA requirements to the CycloneDX schema. Providing valid external
reference locators is more difficult that generating a internal identifier. CycloneDX also
does that for all dependencies with the bom-ref identifier.

CdxGen stands out as the sole generator that provides an author field within the SBOM.
This field represents a complex data structure capable of encompassing bom-ref, name,
email, and phone. The specification of CycloneDX states: “The person(s) who created the
BOM. Authors are common in BOMs created through manual processes. BOMs created
through automated means may not have authors.” [14]. CdxGen generates all SBOMs
with Prabhu Subramanian as author of the SBOM. He is the developer behind CdxGen.
According to this CycloneDX specification, it is correct to omit the author for the SBOM
if its generated automatically. The CycloneDX specification for authors is therefore not
alligned with the spirit of the NITA minimum elements that states “The name of the entity
that creates the SBOM data for this component.”[36]

Moreover, only Trivy provided the Supplier name for some of the container SBOMs
generated. Also only a view tools provide dependency relationship information in their
CycloneDX SBOMs. While ScanCode and Trivy initialize the dependency relationship
section, only CdxGen and Trivy provide meaningful descriptions of the relationships
between components.

Looking at the version information provided, the CycloneDX SBOMs suffer from the
same effects as the SPDX SBOMs do when different generators struggle to retrieve the
license information.

7.3.2 eBay SBOM Scorecard

In November 2022, eBay introduced a concept for measuring the quality of SBOMs by
applying their self designed metrics to a SBOM. eBay evaluates five distinct aspects of the
SBOMs, whether in SPDX or CycloneDX format, and aggregates these into a cumulative
score. The aspects assessed are Specification Compliance, Package ID, Package Versions,
Package Licenses, and Creation Information. Each aspect is assigned a different weight,
which influences the overall SBOM score. [31]

The SPDX SBOM Scorecard Table 15.3 presents an aggregation of scores for the evalu-
ated SBOMs. It reveals that Syft, during the container phase, achieves an exceptionally
high score of 92%. In the release phase, MST attains the best score with 60%, and in the
sources phase, Syft leads once again with 66%. MST and Tern are the only tools to receive
a 100% for their package versioning coverage. Syft is also the sole generator recognized for
providing at least some form of package identifiers. Although all generators are credited

25

7 SBOM Data Assessment

with providing complete creation information, only GDG scores 80%; this is attributable
to GDG not offering a tool that generated the SBOM, which is technically accurate given
that GitHub provides an API to retrieve SBOMs.

In the CycloneDX SBOM Scorecard Table 15.4, the scores for the CycloneDX samples
indicate that Syft once again achieves the highest overall score in the container phase with
87%. ScanCode delivers the best results for the source phase with 75%, and MST leads in
the release phase with a score o 77%. A comparison of the SPDX and CycloneDX results
shows that the proportional outcomes are somewhat correlated. The notable exception
is the performance of Trivy across all phases in the CycloneDX samples, where it scores
poorly. However, this may not reflect the actual quality of the samples but rather the fact
that Trivy is the only generator supporting CycloneDX version 1.5 as an SBOM format,
which may not be compatible with the Scorecard tool.

7.3.3 SBOMQS Quality Metrics for SBOMs

SBOMQS is a project by Interlynk-io that provides quality metrics to assess SBOMs in both
SPDX and CycloneDX formats. SBOMQS introduces a range of features for evaluating an
SBOM. Each feature is scored on a scale from 0 to 10. These features are then categorized
into groups such as NTIA-minimum-elements, Structural, Semantics, Quality, and Sharing.

Comparing the results between the SPDX results in Table 15.5 and the CycloneDX
results in Table 15.6 the biggest difference can be seen in the sharing category. While all
SPDX SBOMs provide sufficient licensing for sharing, no CycloneDX SBOM provides any
licensing information. This is related to the fact, that SPDX specified their standard with
a default license in place while CycloneDX does not specify a default license. This can
make it much easier to exchange and process a SBOM with SPDX.

While Structurally all SBOMs in SPDX are fine, the Trivy SBOMs were the only ones
that received a lower score. Looking at the scores for the NITA minimum requirement
generated by SBOMQS the results follow the same trent as this, generated in this study.
In the overall average of all tools the SPDX SBOMs achieve a score of 8.14 while the
CycloneDX SBOMs only reach a score of 6.77. This might be also related to the issue
that CycloneDX maps the requirements to more demanding benchmarks then SPDX does.
Nevertheless, the SBOMQS result for the NTIA minimum elements deviate from the
results we generated, which can relate to a different implementation, the usage of other
mappings for the requirements or the evaluation of additional requirements related to the
original NTIA minimum elements.

On the quality and Semantic parts CycloneDX archives a slightly higher score with 4.90
for the quality and 4.19 for the overall semantic in all tools, while SPDX reaches a score of
3.85 for the quality and 3.18 for the semantic of all samples.

26

8 Dependency Insights

The dependencies enumerated in an SBOM arguably contain the most important informa-
tion. They encompass various identifiers, such as CPEs and PURLs, and include license
information along with extensive data about the dependencies related to a software prod-
uct. Thus, evaluating the effectiveness of an SBOM in terms of its dependencies involves
two aspects: the quantity and the quality of the dependencies.

Discussing the quantity of an SBOM is challenging due to the absence of a single
source of truth that can provide a universally accepted benchmark for verifying the
completeness of a dependency list. The completeness of the dependencies identified in an
SBOM depends on the methodologies of the tools and processes used for its generation.
From a process standpoint, SBOMs can be generated at different phases of the software
development lifecycle. Most SBOM generation tools are designed to operate at the source
code level, during build time, or post-build for analyzing release files or container images.
These tools vary in their support for different programming languages and build tools.
Additionally, other factors, such as the depth of the scan during SBOM generation, need
consideration. Some SBOMs list only first-layer dependencies directly referenced by
the build tools, while others include transitive dependencies that arise due to other
dependencies built upon them.

Regarding the quality of dependencies in a SBOM, the question arises as to how compre-
hensively a dependency is enriched. Both SPDX and CycloneDX offer numerous optional
fields that can enhance a dependency’s informational value. The extent to which SBOM
generators enrich this data is crucial. Do they only add available information obtained
from library findings or build tool scans, or do they incorporate additional information
from package repositories or third-party sources?

8.1 Dependency Intersections between SBOMs by Examples

While there is no single source of truth to check for the completeness of all dependencies in
an SBOM, it is insightful to evaluate how the results from different SBOMs intersect across
various phases of the software development lifecycle produced by different generators.
Ideally, all dependencies listed in each scan result should completely intersect, regardless
of the SBOM generator or the phase in which the SBOM is generated. However, in
practice, the intersections between different SBOM generators and the various phases
in the software development lifecycle are often scattered. On the one hand, this can
be by design. A SBOM generated at the sources phase can list test dependencies or
build tools that are not available to a container SBOM, while the container SBOM can
enumerate packages installed on the base image of the container that was not available to
the sourcecode SBOM. On the other side, this can be due to the limitations of the SBOM
generator. For instance, a SBOM generator might not support a specific programming
language, build tool, or enrich the data for a dependency differently, so it can not be
mapped to other results.

27

8 Dependency Insights

To accurately calculate data overlap, several key issues must be addressed. Although an
SBOM lists dependencies, there are various identifiers within a dependency that can be
utilized for comparison. In SPDX format, each dependency is characterized by a name, a
version, and external reference locators. While the semantics of the name and version are
not precisely defined, the external reference locators use standardized identifiers such as
CPE or PURL intended to identify a dependency uniquely.

While CPE and PURL were integrated to be used as identifiers, they only partially
fulfill this role. There is an ongoing discussion regarding the use of PURL as a package
identifier. PURL aims to “standardize existing approaches to reliably identify and locate
software packages” [38]. Although the PURL specification presents a robust attempt
to achieve this, it does not offer a uniform method to compose a PURL for a single
package. Different notations can refer to the same package with a PURL, as discussed
in the following issue related to the PURL specification [16]. While all SBOMs included
a PURL for each dependency, only Syft additionally assigned at least one CPE to each
dependency. Therefore, mapping based on CPE was not feasible.

Therefore, while PURL does not provide an ideal solution for identifying and mapping
packages across different SBOMs, it might be the best option available at the time of
writing. Notably, there are challenges in using PURL as an external reference locator
to identify packages in an SBOM. However, for the purpose of this investigation, only a
portion of the PURL is required to fulfill this use case. Specifically, this chapter uses only
the scheme, type, namespace, and name to map dependencies. The version, qualifiers,
and subpath components of a PURL are not considered in this context to investigate
intersections between the sample SBOMs.

An SPDX dependency may include multiple external reference locators. However,
these values can be redundant within the same SBOM. For instance, in the SPDX SBOM
generated by Syft for the Keycloak project, the JUnit dependency is listed 66 times
identically (same PURL provided), differing only in the randomly generated SPDXID and
the source info, which indicates the location of the dependency discovery. This repetition
occurs because Syft added the dependency separately for each of the 66 different locations
within the Keycloak repository where the dependency was added. A similar situation is
observed in the CycloneDX SBOM generated by Syft for Keycloak. Consequently, for the
purposes of this evaluation, a dependency is considered identified if it appears at least
once in an SBOM. If a dependency is listed multiple times, it will be consolidated into a
single entry to facilitate mapping with other SBOMs.

To illustrate the concept of investigating the intersections between the different SBOMs
generated by different tools and in different phases, first, a real-world example is investi-
gated. Therefore, the Keycloak project was first picked for being one of the biggest sample
projects in this investigation.

Examining the results of the Keycloak scan, eight SBOMs were generated with meaning-
ful results. Syft was the sole generator to produce an SBOM based on release files that list
related dependencies. All other generators failed to identify sufficient dependencies from
the release phase. MST also encountered issues during the container and source scans. In
its sample, Tern could not provide PURLs with the detected dependencies. Additionally,

28

8 Dependency Insights

it included dependencies in the SPDX format that were not present in the CycloneDX
output. Unfortunately, Trivy experienced a crash while scanning the Keycloak sources.

The Table 8.1 illustrates how different dependency entries can be consolidated by name
or PURL in both SPDX and CycloneDX formats. The table also highlights the difference
in data reduction when disregarding the version and further qualifiers of a dependency.
While varying versions of the same dependencies pose less of an issue for release and
container-based SBOMs, it significantly affects source-based SBOMs. This approach can
condense the data to 4083 distinct dependencies, using PURLs as identifiers to map the
dependencies across different SBOMs.

Keycloak distinct Dependencies over all SBOMs by different identifiers
SPDX CycloneDX

No version with version no version with version
Generator PURL Name PURL Name All PURL Name PURL Name All
CdxGen 476 476 481 481 481 476 476 482 481 482
MST 1 44 1 44 44 2 44 2 44 44

C
on

ta
in

er

Syft 850 849 851 851 873 850 850 851 852 874
Tern 0 5 0 5 5 0 0 0 0 0
Trivy 552 554 553 555 578 551 551 552 553 553
CdxGen 0 0 0 0 0 0 0 0 0 0
MST 1 1 1 1 1 1 1 1 1 1

R
el

ea
se

Syft 845 840 846 842 985 845 840 846 842 985
Trivy 0 1 0 1 1 0 0 0 0 0
CdxGen 2848 2779 3710 3710 3714 2848 2779 3728 3710 3728
GDG 1656 1824 2025 2504 2504 1657 1824 2026 2504 2504

So
u

rc
e

MST 1 1 1 1 1 1 1 1 1 1
ScanCode 231 231 231 231 231 231 231 231 231 231
Syft 1555 1553 1908 1908 3014 1555 1553 1908 1908 3014

distinct total 4083 6032 5858 8349 12432 4083 5517 6397 7844 12417

Table 8.1: Keycloak distinct Dependencies over all SBOMs by different identifiers

The dependency plot for the Keycloak sample project, as shown in Figure 8.1, illustrates
the intersections among all generated SPDX SBOMs. Each gray dot represents a project
dependency linked to one or more green, orange, or blue dots. Green dots represent SBOM
generators based on source code analysis, blue dots denote those analyzing container
images, and orange dots correspond to the analysis of release files. The relationships are
established based on the PURLs added to the SBOMs’ dependencies by the generators in
the external reference locators. The plot reveals numerous groups where different SBOMs
intersect in their enumerated dependencies. Generally, source-based SBOMs identified the
most dependencies, which is expected given their access to Maven and NPM build tools
listing these dependencies. Conversely, while linked to source-based results, container
and release file analyses only discovered a few dependencies identified by source-based
SBOMs. However, they detected unique dependencies not connected to source analyses,
possibly due to access to information unavailable in the sources. E.g. in the container

29

8 Dependency Insights

phase, the installed packages of the base-images are often enumerated, which are not
available in the sources phase.

Figure 8.1: Keycloak Dependency Plot SPDX by Ref

While there is no package in this example where one dependency is listed in each SBOM,
31 dependencies intersect between 7 SBOMs (All but the CdxGen-Container). 26 depen-
dencies intersect with 6 SBOMs (not the CdxGen-Container and ScanCode-Source). 88
dependencies intersect with 5 SBOMs in three different constellations. 281 dependencies
intersect with 4 diffrent SBOMs in 4 diffrent constalations. 1347 dependencies intersect
with 3 SBOMs in 10 different constellations. 728 dependencies intersect with 2 SBOMs in
10 different constellations. And 1582 dependencies are appearing in only one SBOM; this
is happening in all SBOMs. In total, Keycloak with PURL has 4083 different dependencies
listed over all SBOMs. This is true for the SPDX and CylconeDx respective results. The
plot shows that relying solely on the quantity of dependencies is not a reliable metric for
evaluating the coverage performance of a SBOM generator.

While eight SBOMs are participating in this analysis, no single dependency directly
intersects with all of these SBOMs. Upon closer examination, there are dependencies
identified by all eight SBOMs, but the PURL is represented differently. For instance,
while most tools denote the PURL for the package jackson-annotations as pkg:maven/
com.fasterxml.jackson.core/jackson-annotations, CdxGen, during the container scan, for-
mats it uniquely as pkg:maven/com.fasterxml.jackson.core/com.fasterxml.jackson.core/ jackson-
annotations. So it’s fair to say that CycloneDX also identifies these dependencies. Never-
theless, such variations complicate data comparison and processing of the data.

Additionally, Syft detected the package twice in both their container and release SBOMs,
once with the standard PURL and once with an altered format incorporating the Java
package namespace. Processing data with such discrepancies poses challenges for later
consumption of the SBOM. On the one hand, it could be argued that duplicate entries
should be avoided as they artificially inflate the size of the SBOM and make it harder to

30

8 Dependency Insights

provide clear statements on the composition of a software product. On the other hand,
the argument is that all available information should be included, even if it leads to
duplicates, as this can enhance the SBOMs. The objective is achieved if a vulnerability is
identified during a later phase of SBOM consumption due to one of the entries providing a
sufficient identifier. Furthermore, if a consumer can link a vulnerability to both entries, it
is still considered a single vulnerability. Hence, while these duplicates present challenges
for this thesis, they are not necessarily problematic in practical application. However,
this also indicates that assessing the quality of an SBOM based solely on the number of
dependencies listed overlooks the quality aspect, focusing merely on the quantity of the
listed dependencies. Looking at the overall intersections and comparing how much an
SBOM participates in a general consensus between different tools can provide a better
understanding of the quality of an SBOM.

8.2 Quantifying the Intersecting Consensus

While Figure 8.1 provides a comprehensive view of the current intersections in SBOMs
generated for the same project by different tools, its ability to quantify these results for
comparative analysis is limited. To address this, a metric is introduced to quantify the
intersections in the data, enabling a measurable comparison and assessment of consensus
among the generated SBOMs.

This metric operates on the premise that a dependency identified by a larger number of
generators is more significant than one identified by a single generator. This assumption
suggests that such a widely recognized dependency contributes more substantially to the
overall consensus in the intersecting SBOMs, as visualized in Figure 8.1. One might argue
that the value should be inversely proportional, with rare dependencies (identified by
only one generator) being more critical due to their scarcity. However, this approach is
not suitable for the dataset at hand, as these rare dependencies do not reflect a consensus
across the SBOMs and might lead to the inclusion of false positives and maleformelly
enumerated dependencies.

To assess the consensus on discovered dependencies, each dependency is assigned a
weight that increases with each generator that identifies it. Therefore, dependencies rec-
ognized by multiple generators are assigned more significant values than those identified
by only one.

The consensus is quantified using the following algorithm: for each SBOM, the al-
gorithm assigns a score to each listed dependency. The score is calculated by dividing
the total number of applicable generators by the number of generators identifying the
dependency. This score is then aggregated across all dependencies in the SBOM, providing
a measurable consensus metric.

consensus =
∑ generator_identif ied

total_applicable_generators

The generators identified represent the total number of generators/phases that enumerate
the investigated dependency.

31

8 Dependency Insights

The total applicable generators refer to the total number of generators/phases that enu-
merate dependencies of the same dependency type (e.g., maven, deb, apk).

Ideally, the generators identified and the total applicable generators are identical, yielding
a score of 1, which indicates a perfect consensus between all SBOMs. If not all gener-
ators/phases enumerate the dependency, the result will range between zero and one,
signifying partial dependency coverage in the collective assessment of the investigated
generators/phases.

An example illustrating the nature of this metric: if one out of ten generators fails to
enumerate a dependency, it lowers the overall results, resulting in a maximum coverage
of 90% for this package. In this scenario, the generators listing the dependency receive
a score of 0.9 for listing the package, which is aggregated with the scores of all other
dependencies. Conversely, the generator failing to list the dependency receives a score of
0 for this package.

To provide better context, this metrics is presented with the count of all dependencies.
This count approximates the highest possible score a generator/phase could achieve if
every dependency scored 100% coverage. The discrepancy is expressed as a percentage,
emphasizing the conversion rate from all identified dependencies to the aggregated score
representing the overall consensus.

conversion_rate =
consensus

package_count

However, it is essential to mention that this metric is specifically designed to compare
the performance of different tools against each other. Ecosystem types detected by only
one tool in a single phase cannot be assessed using this metric, as they would consistently
score as 1, representing perfect 100% coverage. On the one hand, these can be considered
a wildcard, representing data points that boost the performance of a given tool without
any competitors. On the other hand, this negatively impacts tools that have implemented
a variety of ecosystem types not supported by others. Nevertheless, for a competitive
analysis using this metric, the inclusion of other competitors is necessary. For this reason,
ecosystem types detected by only one tool are excluded from the analysis conducted with
this metric.

8.3 Interpreting the Results

Before examining the results in Table 8.2, it is essential to explain the overall functionality
of these results. The Table lists the results, broken down by package type (identified by the
PURL) and the generator/phase that enumerated them. Both dimensions are aggregated.
Results for package types are listed on the left side of the table, while those aggregated by
phase/generator are at the bottom. The overall aggregated result is located at the bottom
left of the table. While individual results list only the metrics, the aggregated results
include the total package count, the metrics itself, the conversion rate, and the sample
size of applicable projects, providing further context for understanding the results.

32

8 Dependency Insights
M

et
ri

cs
d

et
ai

le
d

vi
ew

A
gg

re
ga

ti
on

C
on

ta
in

er
R

el
ea

se
So

u
rc

e

Ty
p

e

Consensus

Conversion

Count

Samples

CdxGen

MST

Syft

Tern

Trivy

CdxGen

Syft

CdxGen

GDG

MST

ScanCode

Syft

Trivy

al
p

m
11

4
10

0%
11

4
1

11
4

11
4

ap
k

90
1

72
%

12
47

46
82

8
49

8
83

0
ca

rg
o

11
91

36
%

33
03

7
77

3
85

2
23

8
12

1
91

6
58

5
cl

oj
ar

s
9

50
%

18
2

1
8

co
m

po
se

r
10

52
40

%
25

67
24

65
2

63
7

50
1

80
7

79
2

28
63

1
65

3
d

eb
21

75
2

73
%

29
39

1
14

1
18

81
9

21
58

8
20

29
3

21
53

4
9

ge
m

28
6

29
%

96
1

11
53

14
9

79
13

0
14

6.
6

14
1

14
7

23
14

6
14

6
ge

ne
ri

c
86

50
%

17
3

12
8

86
0.

5
G

D
G

43
7

50
%

85
9

11
0

15
43

7
go

la
ng

41
88

30
%

13
62

0
48

23
60

28
12

23
89

33
9

26
02

29
95

38
26

17
30

03
31

14
ha

ck
ag

e
31

1
10

0%
31

1
1

31
1

31
1

he
x

6
85

%
7

1
6

6
4

m
av

en
58

87
16

%
35

23
9

58
13

87
27

33
26

53
24

58
9

23
72

19
55

17
34

95
6

18
77

11
26

np
m

22
73

0
39

%
58

13
8

89
42

00
56

86
57

8
55

02
19

52
8

21
18

8
14

85
3

22
21

16
1

12
39

2
nu

ge
t

10
3

30
%

34
3

10
81

81
39

37
6

1
4

py
p

i
70

1
15

%
44

29
86

19
6

26
0

17
2

23
6

1
35

0
20

9
20

6
5

22
0

12
8

rp
m

67
42

16
%

41
46

5
17

2
55

14
66

2
11

37
90

7
10

33
2

1

C
on

se
ns

us

66498

34%

192185

197

14380

19500

36153

22683

35026

24

930

27385

28172

21013

1185

28274

18156

to
ta

l
co

u
nt

59907

25585

62622

31196

57882

112

2292

61056

67390

51333

3617

63707

34697

C
on

ve
rs

.
24

%
76

%
58

%
73

%
61

%
22

%
41

%
45

%
42

%
41

%
33

%
44

%
52

%
Sa

m
pl

es
18

6
11

8
19

4
16

3
19

4
5

19
14

6
11

5
11

7
11

6
11

7
99

Ta
b

le
8.

2:
M

et
ri

cs
de

ta
ile

d
vi

ew

33

8 Dependency Insights

Generally speaking, the higher the number, the better the results. For example, achiev-
ing a high conversion rate is easier with fewer competitors or when the sample size
of packages or overall projects is small. Conversely, a moderate conversion rate in an
enormous sample size might be considered more remarkable.

Upon examining the calculated results in Table 8.2, different ecosystems were detected
across various categories. Notably, while Syft achieved the highest total package count
and score, it did not have the best conversion rate in the container category. Similarly,
GDG, despite having the highest total package count in the sources phase (though not the
highest metric score), did not achieve the best conversion rate in this phase.

While the conversion rate offers valuable insight into performance, its accuracy is
compromised by the phenomenon where tools negatively impact each other’s results.
For instance, a tool that identifies only half of the packages might overlap with 90% of
their enumerated data. Conversely, a tool that detects all packages may show less than
50% overlap. This situation favors tools with lower coverage by artificially inflating their
conversion rates. This effect distorts the true meaning of this metric and adversely affects
the evaluation of tools with higher coverage.

Nevertheless, while the conversion rate is distorted, it still indicates meaningful trends.
The overall conversion rate for all samples is 34%. This rate is only surpassed by the
results of CdxGen for the container and release phase and the ScanCode results in the
sources phase.

As previously mentioned, scanning in the release phase is challenging. While CdxGen
is one of the few tools capable of reporting results in this phase, it is not surprising that
these results are of lower quality.

Regarding the results of CdxGen in the container phase, the low conversion rate might
be attributed to variations in the composition of the PURL identifier, leading to the
inability to map the enumerated packages with other results, as already discussed.

The results of ScanCode in the sources phase can be attributed to a diverging methodol-
ogy of the tooling. Unlike other dependency-centric tools, which focus on investigating a
project’s software supply chain, ScanCode concentrates on the project itself. For example,
while investigating the Keycloak or Jenkins projects, ScanCode listed the package modules
of the project instead of the imported dependencies. Consequently, ScanCode’s results are
often found outside the overall consensus.

It is also important to note that comparing the results of aggregated data introduces a
bias due to varying feature samples. For instance, while one generator supports three dif-
ferent package types, another may support eight different types. Therefore, comparisons
should be approached with caution.

Referring to the left side of Table 8.2, similar effects are observed in the aggregation
of package types as previously identified in the aggregation of different generators and
phases. A low sample size and total package count often indicates a high conversion
rate, while a high package count and sample size from a variety of generators and phases
typically result in a lower conversion rate.

An interesting effect can also be observed in the package types that attained a conversion
rate of 50%. This is primarily due to the fact that two generators identify packages of
the same type, yet there is no overlap in the enumerated packages within their respective

34

8 Dependency Insights

SBOMs. Consequently, this divergence in their findings reduces the overall average score
by 50%, by the nature of the metrics. Package types such as Clojars, Generic, and GDG
fall into this category.

At the lower end of the ranking are Maven and RPM, both with an average score of 16%,
and PyPI with an average score of 15%. Despite their low average scores, these package
managers have a significant sample size and a large number of detected dependencies.
The low score for these package types is attributed to their support by most generators
across all phases. However, the detected dependencies vary widely. For instance, the
lowest score for Maven packages is recorded by CdxGen in the release phase with 24
dependencies, while Syft in the same phase achieves a score of 589. The scores exhibit
linear growth across different phases and tools, culminating in the Syft container result
with a score of 2733. The overall score is 5887, representing a conversion rate of 16%.

This evenly distributed spread not only affects the performance of individual generators
but also impacts the performance of all others. This effect is most pronounced with
package managers supported by SBOM generators in different phases. Deb, generic, golang,
maven, npm, nuget, pypi, and rpm all have one or more generators that achieve a score of
less than 1% relative to the best-scoring generator and phase for a given package type.

To partly resolve these distortions, Table 8.3 introduces an aggregation by package type
grouped by phase. This separated diverging performance levels between phases.

While reducing the complexity arising from the varying phases in which the SBOMs
were generated, it is evident that the overall results have improved significantly. However,
RPM’s conversion rate falls below the total average, as calculated in Table 8.2. This
discrepancy may be attributed to the wrongful attribution of deb packages by CdxGen,
which adversely affects the overall score.

Summarizing the findings of the investigation into the listed dependencies, it is evident
that while SBOMs based on sources or containers add value to the intersecting dependency
list, the release phase encounters difficulties in contributing relevant information. This
discrepancy may arise from the relative ease with which an SBOM generator can identify
a code repository or unpack the layers of a Docker container. In contrast, unpacking a
release file without prior knowledge of the technologies employed in its creation can pose
significant challenges. To address this issue, the analysis of release files could benefit from
improved unpacking procedures to ensure accurate extraction of information.

While the results of the calculated metrics showed interesting insights, comparing the
generated SBOM dependency results also shows that the results of the introduced metrics
can only provide a distorted picture of the overall situation in this multidimensional
problem. Additionally, the metrics only focuses on the intersection of dependencies, not
taking into consideration all other aspects of an SBOM. Therefore, it is not recommended
to use this results or approach to evaluate SBOMs outside of an academic context.

However, the metric has shown a first approach to address this multidimensional
problem and relate to issues in the overall data by investigating the subsets in the data,
that performed worse than the overall dataset. Thus, the impact of diverging PURL
identifiers, wrongfully attributed package types, or differences in the overall methodology
could be identified.

35

8 Dependency Insights

M
et

ri
c

p
ha

se
vi

ew
C

on
ta

in
er

R
el

ea
se

So
u

rc
e

Ty
p

e
SU

M
A

V
G

C
ou

nt
Sm

p
l.

SU
M

A
V

G
C

ou
nt

Sm
p

l.
SU

M
A

V
G

C
ou

nt
Sm

p
l.

al
p

m
11

4
10

0%
11

4
1

ap
k

12
47

10
0%

12
47

46
ca

rg
o

33
03

10
0%

33
03

7
cl

oj
ar

s
1

50
%

1
1

9
50

%
17

1
co

m
p

os
er

13
66

75
%

18
01

18
13

13
77

%
16

96
20

d
eb

14
67

1
50

%
29

34
2

13
9

25
50

%
49

8
ge

m
37

7
56

%
66

6
7

23
6

61
%

38
3

9
ge

ne
ri

c
86

50
%

17
2

12
8

1
50

%
1

1
G

D
G

15
10

0%
15

3
43

7
50

%
85

9
11

0
go

la
ng

30
14

63
%

47
80

43
39

2
98

%
39

9
3

56
66

44
%

12
72

0
33

ha
ck

ag
e

31
1

10
0%

31
1

1
he

x
7

10
0%

7
1

m
av

en
98

64
41

%
23

73
0

48
15

46
77

%
19

88
8

68
70

44
%

15
50

4
45

np
m

86
40

89
%

97
04

54
31

79
2

56
%

56
00

9
78

nu
ge

t
14

3
58

%
24

3
1

92
64

%
14

2
10

py
p

i
11

00
38

%
28

36
64

2
10

0%
2

2
84

0
40

%
20

55
49

rp
m

13
81

9
33

%
41

45
6

16
9

4
40

%
10

10
33

%
1

1
to

ta
l

54
45

5
47

%
11

61
07

19
5

19
44

81
%

23
99

21
50

90
0

55
%

93
05

7
16

2

Ta
b

le
8.

3:
M

et
ri

c
ph

as
e

vi
ew

36

9 SBOM License Insights

While SPDX and CycloneDX both manage their licensing information alongside their
package/component lists, the approach to document the data differs.

9.1 SPDX License Features

SPDX introduces five additional values for their packages that can contain licensing
information. The most frequently used one is the Declared License field, intended to
house licensing information for a package as declared by the authors of the package. The
Concluded License field is designed to represent the license information concluded by the
SPDX document creator from the package or from alternative sources of information
if the license cannot be determined. Following this is the All Licenses Information from
Files field, intended to encompass all license information derived from files within the
packages themselves. The Comments on License field is intended to contain comments
on the licensing information. It should be used when the Concluded License field or the
License Information from File field has been used to describe a license, enabling consumers
of the SBOM to understand the source of the information. Lastly, there is the Copyright
Text field, intended to hold the complete copyright text that may be contained within the
package. This is particularly important if a proprietary license was used that cannot be
referenced to using the SPDX license list. [45]

If a license is added as Concluded, Declared, or from File, the licensing information is
referred to by the SPDX License List. The license list standardizes the description of
known licenses, allowing them to be referenced in an SPDX SBOM. Therefore not the
whole license text of each license must be included in a SBOM. Annex D of the SPDX
specification describes how licenses should be referenced to and introduces the SPDX
License Expression, a logic for describing the relationships between multiple licenses
discovered within a package. These relationships are expressed using logical operators
like AND, OR, or WITH to represent the license relationships. [45]

9.2 CycloneDX License Features

CycloneDX introduces a separate licensing subsection within the component specification
to provide detailed licensing information. This section allows for two different formats to
describe the licensing information. Either CycloneDX lists licenses in a format described
by CycloneDX itself or the SPDX License Expression can be used to describe license
information. In both options, CycloneDX leverages the SPDX license list to refer to
well-known licenses.

Although CycloneDX does not explicitly document the source from which the license
information is derived, it augments the licensing information with additional features.
Firstly, there is the bom-ref field, which serves as a reference within the SBOM itself.
Next, the ID field describes the license using a valid SPDX license ID from the SPDX

37

9 SBOM License Insights

license list. If the license is not recognized in the SPDX license list, it can be added to
the name field, and the full license text can be included in the text field. Additionally, an
external reference, such as a download location, can be provided in the url field. While
the download location primarily refers to the package itself, it may also prove useful for
later license deduction for a given package.

The licensing object can encompass further information to describe license properties,
such as alternate IDs used for identification, licensor, licensee, purchaser, purchase order,
license types (e.g., academic, appliance, device, evaluation, perpetual), last renewal date,
and expiration date. Any additional information can be included in the properties section
of the license as a key-value mapping.

9.3 Comparison of License Features

The CycloneDX and SPDX license coverage Table 9.1 illustrates the number of depen-
dencies identified and the proportion containing license information. While in the De-
pendency section, it was necessary to remove duplicate entries for mapping purposes,
duplicates were not removed for investigating the licensing aspect of SBOMs. During
the container phase, CdxGen and ScanCode experience an issue where converting the
SBOM from CycloneDX to SPDX results in the loss of most, if not all, license information.
Furthermore, it is worth noting that Tern includes significantly more licensing information
in the SPDX format compared to the CycloneDX output. This is because the package
information is much more enriched in Terns SPDX SBOM than in CycloneDX. In all other
cases, the differences in the quantity between CycloneDX and SPDX are neglectable.

CycloneDX and SPDX License Coverage
SPDX CycloneDX

Generator All Licensed Ratio All Licensed Ratio
CdxGen 63466* 2365* 3%* 65035 35621 54%
MST 28560 0 0% 28560* 0* 0%*

C
on

ta
in

er

Syft 72391 52496 72% 72584 52274 72%
Tern 50149 46380 92% 32808 4783 14%
Trivy 66025 42519 64% 60931 40271 66%

R
el

.

CdxGen 112* 0* 0%* 112 0 0%
Syft 5965 740 12% 5965 740 12%
CdxGen 72968* 9560* 13%* 73249 9643 13%
GDG 92008 64841 70% 92008* 62630* 68%*
MST 73295 294 0% 73295* 0* 0%*

So
u

rc
e

ScanCode 14767* 0* 0%* 14901 12928 86%
Syft 98891 2859 2% 98891 2844 2%
Trivy 42595 3426 8% 44137 3218 7%

Table 9.1: CycloneDX and SPDX License Coverage

The CycloneDX license coverage table by language (Table 9.2) shows the coverage of
licensing information in all packages in the CycloneDX SBOMs. The coverage is calculated

38

9 SBOM License Insights

for each package type based on the PURL by dividing the total count by the count
of packages that provide licensing information. The table only shows the quantity of
packages with license information, but not the quality of the information that is produced
by the generators. It can be seen, that CdxGen, GDG, ScanCode, Syft, Tern, and Trivy
produced mixed results regarding the license coverage in all dependencies. MST produced
no license information whatsoever for the listed packages in their SBOMs. This is also
true for the SPDX license information that MST generated originally. The information was
not lost during conversion to CycloneDx.

Moreover, the CycloneDX license coverage table by language (Table 9.2) indicates that
the quality of license information is predominantly influenced by the generator used.
In the context of container images, it is observed that package types associated with an
OS package repository (e.g., apk or rpm) achieve high coverage. Furthermore, container
and release scans yield good results for programming languages that are not compiled
but build for an interpreter, such as JavaScript-npm or Python. However, the licensing
data for such languages could be improved if the SBOMs were generated from sources.
The most significant challenges in obtaining licensing information in containers and
releases are encountered with compiled programming languages, where only binaries
are distributed. For instance, while Golang supports dependency detection in binaries,
no licensing information is incorporated at the container or release stage. Conversely,
substantial licensing data can be added when generating SBOMs from source code.

Upon examining Table 9.3, it becomes evident which fields various generators uti-
lize during different phases to incorporate license information into their SBOMs. The
Declared Licenses field emerges as the most frequently employed option. Notably, MST
and ScanCode were unable to append any license information to their SPDX SBOMs. In
contrast, all other generators offer support for the Declared Licenses field and successfully
enriched certain dependencies with licensing details. An exception to this pattern is
observed with GDG, which opted for the Conducted Licenses field instead. This choice
deviates from convention, as the field was not specified to contain information derived
from automated processes. Trivy and the converted SPDX SBOMs from CdxGen also
employ the Conducted License field, simultaneously recording the same information in
both the Concluded Licenses and Declared Licenses fields.

While MST claims to analyze the files in some dependencies, this is only true for the
dependency MST adds for the scanned project itself and therefore has no real value. No
other generator claims to have analyzed the files. Also ScanCode is not claiming to have
analyzed the files, while it would be able to claim it. ScanCode invests lots of resources
while scanning to analyze each file. This information might not be relait by the conversion
from CycloneDX to SPDX due to the fact, that CycloneDX does not store any information
about files analyzed.

In the container phase, Syft was the sole generator that consistently included download
location in their packages entries. In the sources phase, MST also attempted to provide
download location for some of their packages; however, the quality of this information was
relatively low. Specifically, MST’s data contained references to RubyGems homepage 268
times, ’demo,’ ’.’, or ’unknown’ were added as download locations 15 times, and only four
packages referred to actual GitHub repositories as download location.

39

9 SBOM License Insights

CycloneDX Licenses Coverage
Container Rel. Source

Languages
C

d
xG

en

Sy
ft

Te
rn

Tr
iv

y

Sy
ft

C
d

xG
en

G
D

G
*

Sc
an

C
od

e

Sy
ft

Tr
iv

y

alpine 99% 100%
alpm 100% 100%
apk 99% 99%
autotools 90%
bower 45%
cargo 0% 26% 28% 0% 0%
clojars 0% 0%
composer 99% 99% 99% 97% 36% 65% 96% 96%
conan 0%
crane 100%
dart 55%
deb 88% 0% 83% 0%
gem 0% 98% 66% 97% 0% 85% 93% 0% 0%
generic 0% 0%
github 0% 0%
gh-
action

0%

golang 0,08% 0% 2% 0% 0% 0% 42% 0% 37%
hackage 0% 0%
hex 0% 0% 0%
maven 0,08% 41% 0% 29% 83% 32% 67% 0,4% 1%
none 100% 0% 0% 100%
npm 0% 97% 99% 96% 0% 89% 70% 3% 0,3%
nuget 0% 0% 0% 75% 85% 0%
null 0% 0% 0%
osgi 0,3%
pub 0%
pypi 26% 93% 80% 92% 21% 73% 85% 2% 0%
rpm 83% 99% 100% 100% 100%
suse 100%
ubuntu 100%

Table 9.2: CycloneDX Licenses Coverage by Language

Syft outperforms other generators in this regard, although it’s worth noting that Syft
sometimes relies on alternative identifiers instead of real download locations. Notably,
684 distinct download locations refer to what looks like a GitHub project name of the
pattern [text]/[text]. 3164 distinct download locations refer to actual download locations
that could be downloaded or pulled as a git repository by URL.

40

9 SBOM License Insights

SPDX License Values
Generator All Declared Concluded Files ana-

lyzed
download
location

copyright
text

CdxGen 63466 2365 2365 0 0 0

C
on

ta
in

er

Syft 72391 52368 0 0 14307 0
Tern 50149 30933 0 0 0 41431
Trivy 66025 42519 42519 0 0 0

R
el

.

CdxGen 112 0 0 0 0 0
Syft 5965 740 0 0 0 0
CdxGen 72968 9560 9560 0 0 0
GDG 92008 0 64841 0 0 0

So
u

rc
e

ScanCode 14767 0 0 0 0 0
Syft 98891 2859 34 0 0 0
Trivy 42595 3426 3426 0 0 0

Table 9.3: SPDX License Values

Tern stands out as the only SBOM generator that incorporates the full license text by
default. However, it’s essential to consider that including each license text significantly
increases the size of the SBOM files. Additionally its worth mentioning, that Tern has
detected more license texts than declared licenses.

CycloneDX License Values
Generator Expression License License ID License

Name
License
URL

CdxGen 33256 2365 2202 175 2202

C
on

ta
in

er

Syft 240 52034 109385 60890
Tern 56 4783
Trivy 40271

R
el

.

CdxGen
Syft 0 740 32 708
CdxGen 61 9582 9706 783 4118
GDG 62630 62542 88

So
u

rc
e

ScanCode 12928
Syft 5 2839 2746 110
Trivy 3213

Table 9.4: CycloneDX License Values

In examining the CycloneDX license values presented in Table 9.4, it is distinguished
between listing SPDX License Expressions and listing license objects as designated by Cy-
cloneDX. Trivy and ScanCode exclusively utilize SPDX License Expressions in their Cy-
cloneDX SBOMs. In contrast, Tern, Syft in the release phase, and the converted GDG
SBOMs solely employ CycloneDX licensing objects. The use of licensing objects by GDG
is primarily attributed to the conversion of the SBOM format from SPDX to CycloneDX,

41

9 SBOM License Insights

rather than being an inherent characteristic of how GDG generates license information.
Both CdxGen and Syft employ these two methods to describe licenses in CycloneDX.

A detailed examination of the license information in CycloneDX, as illustrated in the left
section of Table 9.4, reveals the values utilized within the License-type form of CycloneDX.
All generators employing the licenses object utilize the License ID field within the object
to refere to licenses. This License ID field also references the SPDX License Expression
standard related to the SPDX license list. Additionally, the License Name field is employed
by all generators except Tern. This field is designed to convey License information that
cannot be encapsulated by an SPDX License Expression. Uniquely, CdxGen incorporates a
download location in the license information. There are additional fields in the CycloneDX
license object, as defined in the schema standard, which were not utilized by any generator.
None of them employed the Text, Licensing, or Properties sections of the licenses object.

An analysis of the SPDX License Expressions used by the generators in SPDX SBOMs
for concluded and declared licenses, as well as in CycloneDX SBOMs for the expressions
and License IDs, indicates that all generators employed the expression logic. This logic
allows to describe the interrelations of multiple licenses using expressions such as AND,
OR, or WITH.

42

10 SBOM Relationship Insights

CycloneDX and SPDX both provide features to detail the relationships among components
within an SBOM. However, their approaches differ. SPDX defines relationships, enabling
the description of how various resources in an SPDX SBOM interconnect. It enumerates
relationship types to better contextualize these connections. For instance, a package may
relate to other packages or files. Similarly, the same dependency may be referenced by
other packages containing it. CycloneDX, in contrast, implements a section dedicated
solely to outlining the relationships between the components themselves. This focused
approach eliminates the need to enumerate relationship types.

10.1 SPDX Relationships

SPDX Relationships

Generator

C
O

N
TA

IN
S

D
E

P
E

N
D

E
N

C
Y

_O
F

D
E

P
E

N
D

S_
O

N

D
E

SC
R

IB
E

S

G
E

N
E

R
A

T
E

D
_F

R
O

M

H
A

S_
P

R
E

R
E

Q
U

IS
IT

E

O
T

H
E

R

CdxGen* 202
MST 28355 205

C
on

ta
in

er

Syft 1403954 2124 204 76797
Tern 34994 177 30309 1210
Trivy 92740 202
CdxGen* 117
MST 117

R
el

ea
se

Syft 2 117 5965
Trivy 116
CdxGen* 163
GDG
MST 73121 174

So
u

rc
e

ScanCode* 162
Syft 174 98891
Trivy 64478 168

Table 10.1: SPDX Relationships

In examining the aggregation of relationships listed in the SPDX SBOMs, it can be
observed that only the SBOM generated by GDG does not support relationships at all.

43

10 SBOM Relationship Insights

In contrast, all other generators include at least one dependency of the type DESCRIBES,
typically referencing the document itself to establish a root in the relationship graph.

During the container phase, Syft, Trivy, and Tern exhibit a consensus by depicting
relationships with the CONTAINS type.

Apart from that there is no significant consensus on the types of relationships that
should be used to describe the relationships within a SPDX SBOM.

It seems, that a more common practice is that a generator implements preferred rela-
tionship types to describe the relationship tree in the SBOM.

CdxGen and ScanCode, however, experience issues due to the conversion of the SBOM
to SPDX format, resulting in the loss of potentially useful relationships.

10.2 CycloneDX Dependency Relationships

In analyzing the dependency relationships within the CycloneDX samples, it is observed
that only CdxGen and Trivy support dependency relationship functionality. In the Sources
phase, both enumerate a large part of dependencies in the relationship section. In the
Container phase, CdxGen enumerated 11 dependencies while Trivy lists also a large
portion of dependencies. In the release phase, only Trivy enumerates 117 dependencies in
the relationship section.

This finding is particularly noteworthy given that most other tools facilitate the de-
scription of relationships in SPDX SBOMs but not in CycloneDX SBOMs. However, it
is important to distinguish between SPDX also listing relationships to other resources
like files or snippets, while CycloneDX focuses only on relationships between dependen-
cies. Trivy consistently incorporates relationships in all its SBOMs. The container and
source SBOMs from Trivy include meaningful relationship information. However, the
release SBOMs primarily features a relationship root referring back to the SBOM itself but
no other relationship description of listed components. CdxGen successfully generates
meaningful relationship graphs exclusively during the source phase.

44

11 Results / Findings

Several findings can be derived from the investigation in this research. Depending on the
reader’s perspective of this paper, different findings might be addressed. Therefore, the
results are grouped into five sections, addressing several perspectives.

11.1 General Results

While this thesis investigates several aspects of SBOMs the general results are grouped in
the findings related to the different sections covered in this paper.

11.1.1 SBOM Standards

While both SPDX and CycloneDX implement the concept of a machine-readable SBOM
specifications, they differ in their respective approaches. Each has unique methodologies
and supports different use cases. Although tools exist to convert an SBOM from SPDX to
CycloneDX and vice versa, this conversion is not risk-free; information loss is a potential
issue. This is because, despite mapping values between the two, not all use cases of one
SBOM format are necessarily represented in the other [5].

SPDX, as a specification, has been standardized as ISO/IEC 5962:2021 [2], with version
2.2.1 of SPDX. However, the current iteration is version 2.3, with version 3.0 forthcoming.

The current version of CycloneDX is 1.4 updated at the time of writing to 1.5.
CycloneDX offers not only the specification but also a diverse variety of tools for various

programming languages, aiding the generation, processing, and consumption of SBOMs.
Similarly, while SPDX directly provides tools pertinent to its specification, it is also
integrated into a wide variety of tools and projects.

11.1.2 SBOM Generation

In summarizing the lessons learned from generating SBOMs, it becomes clear that this
process is multifaceted. Notably, generating SBOMs during the Release phase did not
yield meaningful results, in stark contrast to the more fruitful outcomes observed in both
the sources and container phases. The methodologies for data extraction employed by
tools in these phases vary significantly. For example, in the container phase, each tool
must scan files within the container. However, in the sources phase, there is a divergence
in strategies. Tools such as Trivy and Syft don’t shell out to external build tools like
Maven, opting to deploy their own parsers for extracting information. Conversely, tools
like CdxGen interact directly with build tools such as Maven. This variation in approaches
highlights certain security implications, particularly when SBOM generators invoke third-
party applications, they need to be found trustworthy. Additionally, tools like ScanCode
perform a comprehensive scan of each file in the repository, thereby providing deeper
insights into the broader project architecture and extending beyond mere dependency
inclusion.

45

11 Results / Findings

Looking at the performance, the tools that implemented their parsers were the most
stable. Syft had no crashes, and Trivy crashed due to issues reading pom.xml files.
Followed by CdxGen, which crashed eleven times due to issues communicating with the
build system. It could also be argued that the developers are responsible in this case for
providing a working setup / build system CdxGen can work on which was different in
this paper. ScanCode consumes a lot of processing power and time to scan all files.

Also, it is shown that the different generators support different phases and ecosystems in
the software development lifecycle. All these differences in the investigated tooling make
it hard to make statements about the expected coverage and depth of the enumerated
results. It can not be answered easily if only direct dependencies were enumerated, or also
traversing dependencies are listed. In the release or container phase, it is also not possible
to differentiate between direct or traversing dependencies. For example, in Java projects, it
is common to add all dependencies in a lib directory. Also, it would be necessary to access
the Maven repository to enumerate traversing dependencies in Maven to resolve them.
While tools like CdxGen do so natively by using the build tooling, others like Syft only do
that if enabled or might not support listing traversing dependencies at all. Ecosystems like
NPM, on the other hand, enumerate all packages in a package-lock file so all traversing
information can be resolved. Scaling this complexity on all tools, phases, and ecosystems
makes it challenging to make statements about the quality of the generated SBOMs. Zhao
et al. give an excellent example in their paper working on SCA in Java projects, presenting
the complexity of the Java build system and the limitations of the investigated tooling and
their findings, which are partly reflected in this investigation [50].

11.1.3 SBOM Data Assessment

To generated data was assessed by applying current tools and metrics to it. The aggregation
further shows that the generators implement different features and standards and point
out differences between the different Standards, like diverging requirement mapping
of the NTIA minimum elements and different support of the same features. E.g. more
generators support mapping out relationships in SPDX than in CycloneDX. The assessment
also shows that the results from the release phase are very competitive compared to the
other phases, which is contradicted by the results of the dependency insights section.

11.1.4 SBOM insights

The results of the insights section show that the generated SBOMs in the release phase
are not competitive with the results in other phases. Partly, they do not enumerate any
dependencies in an SBOM and are therefore excluded from the assessment.

It is also shown that identifiers like PURLs are produced differently, which makes it
challenging to compare the produced data. This can also make it difficult to consume the
SBOM and compare the data to vulnerability databases or further enrich them.

While all other SBOMs enumerate dependencies and enrich them with different informa-
tion, other use cases like License information or dependency relationships are only partly

46

11 Results / Findings

supported. This is not surprising, considering that all of these use cases are structured
around the enumerated dependencies, inheriting quality issues.

11.2 Findings from a Developer Perspective

Looking at the findings from a developer’s perspective that needs to integrate an SBOM
generator in a project, this result should be used with caution. While the sample projects
used in this investigation represent various technologies, it is not sufficient to tell which
generator is best. Based on the different features of each generator, supporting differ-
ent ecosystems and phases, it might be best to look into generators that support the
technologies used in the project and test them against the affected projects.

While this paper only investigates tooling that supports a wide variety of different
technologies, it is noteworthy to mention that there are a lot of other tools available that
are much more specialized on a single technology and integrate seamlessly with the build
system of a project. For example, OWASP provides a wide variety of CycloneDX plugins
that can be incorporated into a project.

Suppose the affected project is based on a single technology, for example, a project that
produces a library published on a package repository. In that case, it might be best to
integrate one of these plugins into the build system. Integrating tightly with the build
system might produce the best results for an SBOM.

If the project is composed of a wide variety of different technologies, it might be
challenging to integrate the necessary plugins into the build system and merge all the
produced results into one overall SBOM. For example, a project that implements a backend
server in Java, a frontend in vue.js, and incorporates some Python and C++ to implement
the functionality in a performant fashion while also shipping a database for persistent
would prove challenging to produce an SBOM based on plugins that integrate into each
technology separately. While such projects often use build tools to manage the overall
project composition, integrating SBOM plugins with them might also be challenging, and
the results might be impaired. Also, the ongoing complexity of maintaining a complex
setup to produce an SBOM at build time might be challenging. In such cases, it might
be best to use tooling like the one investigated in this paper, which does not integrate
with the build system but is able to scan the project repository and process the used
technologies.

11.3 Findings from a Consumer Perspective

While this paper does not investigate the consumption of SBOMs but only the generation
of such, it is worth mentioning that an SBOM can be generated based on different motives.
While a consumer of an SBOM can use it for primary use cases like vulnerability or license
scanning, the producer of the SBOM might have done so for other motives, like being
compliant with government regulation. While incorporating the SBOM into an asset
management platform, its quality should be checked.

• Does the SBOM comply with the NTIA minimum elements

47

11 Results / Findings

• Does the SBOM enumerate packages
Does the packages incorporate the package version
Does the packages incorporate external identifiers like PURL or CPE
Does the packages incoperate sufficiant license information

• Are there missing packages enumerated by other tools

11.4 Findings for Generators

A wide variety of differences can be found in the SBOMs produced by the different
generators. These differences represent a unique selling point to potential users or
customers. This can be rooted in diverging tooling methodologies and different goals
the tools try to achieve. However, they can also be based on the differences in supported
platforms and environments. While all of these are legitimate reasons for differences
in the produced SBOMs, differences might also be related to bugs that still need to be
addressed or features not integrated yet.

Benchmarks like the NITA minimum elements, the SBOM Scorecard project, or the
SBOMQS project can provide handy tools to get an idea of the quality of an SBOM.
However, these tools might fail if the data is enriched with false positives. While it might
be interesting to implement the generators so that all generated SBOMs comply with these
requirements, the quality of the SBOM gets reduced by providing automatically generated
data weakly- or unrelated to the information the field was intended for. Incorporating
data based on references is optimal, but it can also be argued that providing data based
on an educated guess might also be sufficient. Nevertheless, at some point, it is better to
provide no information than data that is likely to be wrong and misleading.

All generators are producing an SBOM in any case. Even if no additional information is
added to the SBOM. It could be argued that there should be a break condition where the
generation fails due to a lack of information. This raises the question of when a generator
should fail. Software developers in a competitive market prefer to produce tools that
are easy to use and do not fail. Nevertheless, the user needs to know that he might have
produced a low-quality SBOM. The SBOM generator MST is the only tool requiring the
user to specify certain information in order to produce an SBOM.

To better address this issue, it might be sufficient to give the user the opportunity to
configure a set of metadata that gets consumed while generating the SBOM so it could be
enriched with this additional information that otherwise could not be retrieved. Currently,
the only way to add such information is by manually manipulating the SBOM after
generation.

11.5 Findings for Spesification Standardisation

SPDX and CycloneDX provide a wide range of optional use cases, making it hard to set
expectations for an SBOM. It is not clear what information is contained and how detailed
the description is. This paper shows the different methodologies implemented by the

48

11 Results / Findings

generators investigated for the same standards. While most fields are optional, it should
be reviewed if all these methodologies are complementary.

This issue gets even more concerning when looking at the vast differences in use cases
an SBOM can incorporate. CycloneDX is not only capable of incorporating an SBOM but
can also be used for other use cases like a Hardware BOM (HBOM), Software as a Service
BOM (SaaSBOM), Machine Learning BOM (ML-BOM), Manufacturing BOM (MBOM),
Operations BOM (OBOM), Vulnerability Exploitability Exchange (VEX), Vulnerability
Disclousure Report (VDR), Bill of Vulnerabilities (BOV) or the Common Release Notes
Fromat [26]. While the use case of an SBOM might still be the best known, the additional
complexity makes it hard for implemented tooling to incorporate all of these use cases to
process all provided information. While a BOM can incorporate all of these features, in
the real world, it might only incorporate a single or several but not all of these use cases.
To address these concerns, CycloneDX refers to the Software Component Verification
Standard (SCVS) that implements the BOM Maturity Model. This is intended to provide a
framework for specifying profiles that can used to validate a BOM to check if they meet
the expected requirements. The BOM Maturity Model is still under development and was
published at the time of writing. [47]

SPDX addresses this issue by introducing profiles in the upcoming SPDX version 3.0.
With profiles, SPDX addresses conformance issues, workgroups that focus on developing
profiles, and addresses namespaces derived from these profiles. A generator of a BOM
can then indicate that a BOM supports a particular profile so a consumer of a BOM can
adjust their expectations [25].

49

12 Limitations

This thesis presents a comprehensive analysis of various SBOM generators across different
stages of the software development lifecycle. However, the investigation was conducted
with certain limitations, as detailed in the following.

In this study, SBOM generators were compared from all phases, without taking into
account the differences in features implemented by these generators or the variations in
sample sizes provided in different stages.

Additionally, not all generators were capable of processing every sample project pro-
vided. While it could be a argued how to handle the absence of SBOMs in the evaluation,
this issue further distorts the sample sizes.

When evaluating the generated SBOMs, mapping the PURLs as external identifiers
across different SBOMs proved to be a significant challenge. These challenges primarily
stemmed from duplicate entries created by some generators and variations in the PURL
syntax, complicating the mapping process.

The selection of subject projects was based on their latest status of the projects. Although
most projects adhere to a rapid publication cycle, this does not guarantee that the most
recent changes in the git project’s main branch align with the latest Docker container or
build. This discrepancy may lead to variances in the results between Container, Release,
and Source SBOMs.

Also, this thesis only compares the results from different generators against each other,
but not against a single source of truth that is based on the sample projects. Therefore, it
can only be argued about the consensus between the different generators. It can not be
shown that the consensus aligns with the sources they are based on.

Furthermore, the relevance of this information may be transient, given the rapid pace
of innovation in this field. The current version of CycloneDX is 1.5, with development
for the forthcoming version 1.6 already underway. Similarly, the latest version of SPDX
is 2.3, with substantial progress made towards the major 3.0 release, for which a release
candidate is already available.

Although further tools emerged, that could also be considered in such an evaluation
that were not available at the beginning of this thesis.

This thesis was conducted in consultation with several developers of the different
SBOM generation tools investigated. They acknowledged that some behaviors reported
are attributable to bugs in the generation process, with resolutions anticipated in future
versions and were partly fixed already at time of writing.

50

13 Further work

To improve the quality of SBOMs throughout various stages of their generation in the
software development lifecycle, it is proposed to implement a mapping strategy. This
strategy would align versions based on commits or tags between the source code in the git
repository, the software release, and the container version. Such an approach is anticipated
to enhance data quality and potentially minimize the occurrence of duplicates, which
often result from minor version discrepancies or changes due to the addition or removal
of packages.

Furthermore, this capability could enable the creation of different SBOMs for various
versions of a software product. This would provide valuable insights into the SBOM drift
during the software’s development lifecycle. Such insights are crucial for comprehending
the evolution of software projects, their adaptation to emerging vulnerabilities, and could
offer a novel approach to assessing open-source projects.

Although this thesis primarily focuses on SBOM generators supporting autonomous
generation within diverse ecosystems, there is a notable deficiency in tools allowing
for manual modifications of the generated SBOMs. While automation offers significant
benefits, it is essential for developers or maintainers to have the ability to intervene
manually. An SBOM should not only represent the automated tool’s detection but also
mirror the developers’ comprehension of the software project. The goal is to distribute
software with an accompanying SBOM that accurately depicts the project’s components.
Therefore, it is necessary to develop additional tools that empower developers to manually
adjust an SBOM as needed. Ideally, such tools would integrate flawlessly into existing
build pipelines or existing SBOM generators, applying automatically to new builds while
permitting programmatic modifications by developers.

This thesis has explored the coverage of various generators by comparing their results
and calculating the overlapping intersections. However, this approach is not without
limitations, as there remains an inherent bias in the data due to the differences between
the generators abilities. Therefore, a promising direction for future work would be to
implement a ’white-box’ approach. This would involve setting up a collection of sample
projects with known dependencies, to which the generators can then be applied. In such
an investigation, the sample set could be tailored to align with the identified capabilities
of the generators, allowing for a more nuanced evaluation.

While at the beginning of this thesis the adoption of SBOMs in open source projects
was marginal, since then more and more projects published SBOMs with their releases.
While there are still a lot of projects that don’t provide a SBOM, there are a lot more real
world SBOMs available compared to a year ago. Collecting and investigating them could
provide valuable insights into the current adoption of SBOMs and the challenges ahead.

51

14 Summary

The paper presents a comprehensive analysis of SBOM generators, focusing on their
capabilities, compliance with standards, and effectiveness in enumerating and mapping
software dependencies and relationships.

It highlights the pivotal role of SBOMs in today’s software supply chain and their po-
tential value. The paper also discusses regulatory compliance requirements as mandated
by the American EO 14028 and the European Union’s CRA, emphasizing the need for
machine-readable SBOMs.

Standards for machine-readable SBOMs are investigated, namely the specifications for
SPDX and CycloneDX along with their core features.

Open source projects capable of automatically analyzing a software product at different
stages and generating an SBOM are presented. These generators are applied to sample
projects at three different phases of the software development lifecycle, focusing on
container images, release files, and the source code of the projects.

The generated SBOMs are then verified for validity and evaluated using various metrics
and tools, such as the NTIA minimum elements for an SBOM, the SBOM Scorecard project,
and the SBOMQS project.

Subsequently, the paper investigates the features of the generated SBOMs, examining
enumerated dependencies, provided licenses, and other potential features, a SBOM can
contain.

The SBOMs are mapped using the provided PURL as an external identifier to explore
the overlap between different SBOMs. It was discovered that various generators produce
SBOMs of differing quality and depth. Calculating a metrics to compare results was
challenging and not without bias. However, the proposed metric managed to identify
discrepancies in the data that might suggest potential bugs in the implemented generators
by examining subsets of data whose performance was worse than the overall average.

While there are several aspects that should be addressed in this area, the multidi-
mensionality of this problem should be acknowledged. SBOM is a top-down approach
reflecting a standardized and machine-readable representation of a software product.
While this representation will likely never be perfect, the development in this field is
rapid, and the results improve daily.

52

15 Appendix

15.1 Details on SBOM Generation

The following is a detailed description of the generation process for each generator in the
different phases to produce the samples for this thesis.

15.1.1 CdxGen

CdxGen, developed under the OWASP foundation and licensed under Apache-2.0, is a
specialized tool for generating SBOMs conforming to the CycloneDX standard. It is a
versatile tool capable of scanning a multitude of languages and supports 31 different
platforms with a varying of supported package formats. Written in JavaScript, CdxGen
operates independently but can integrate with package managers such as Maven or Gradle,
enhancing its scanning efficacy. Additionally, it accommodates platform-specific plugins,
further fine-tuning its scanning results.

Designed with flexibility in mind, CdxGen not only scans source code but is also adept
at examining container images and various specialized environments, such as servers,
virtual machines, or Java WAR files. While the tooling for CycloneDX format version 1.5
was published at time of writing, the SBOMs for this thesis were generated using version
1.4 to ensure compatibility with other analysis and conversion tools. Version 9.2.2 of
CdxGen was employed for generating the sample data. [19]

Container Scan

CdxGen specifies the feature to scan a given container to create a CycloneDX SBOM. A set
of 205 Docker containers were scanned, resulting in the successful generation of SBOMs
for 202 containers. As expected, CdxGen did not generate a SBOM for the scratch Tag,
claiming, the container is not available. Also CdxGen failed to generate a SBOM for the
containers of pegasus and sonarqube due to internal issues reading the filesystem of the
docker container. The analysis of the generated SBOMs revealed that 186 contained at
least one dependency, 182 included more than ten dependencies, and 158 featured over
one hundred dependencies. The following command was used to generate the samples
(see listing 15.1).

1 cdxgen [container] --deep --spec - version 1.4 -r -o
2 [output .file] -t docker

Listing 15.1: CdxGen container comand

Release Scan

While CdxGen is not explicitly specified as being capable of scanning release files, it
can be applied to such tasks by utilizing its ability to scan the files in a given directory.

53

15 Appendix

Out of 117 projects providing release files in their GitHub repositories, CdxGen was
able to generate an SBOM for each project. However, the quality of these SBOM may be
questionable, as only 5 of them were found to actually detect dependencies within the
release files. Specifically, for Jenkins, CdxGen identified 92 dependencies; for Convertigo,
17 dependencies were detected; and for Sentry, ArchiveBox, and Babashka, only one
dependency each was found. The remaining 112 SBOMs did not contain any detected
dependencies of the subject projects. The following command was utilized to generate the
SBOMs (see listing 15.2).

1 cdxgen --deep --spec - version 1.4 -r -o [output .file]
2 [release /path]

Listing 15.2: CdxGen Command for Release Scanning

Source Scan

CdxGen can be applied to the source files of a project to extract information about
dependencies from the build systems. CdxGen’s documentation indicates that the presence
of build tools, such as Apache Maven, Gradle, or SBT, can enhance the quality of the
results. The tool relies directly on these build systems to determine dependencies, which
can improve the accuracy of the generated SBOMs but may also introduce complexities or
issues during the build process. Due to unforeseen responses from the underlying build
systems, CdxGen’s generation process failed in 11 out of 174 cases. Of the successful scans,
146 SBOMs contained at least one dependency, 113 contained 10 or more dependencies,
and 73 listed over 100 dependencies. The following command was utilized to generate
the SBOMs (see listing 15.3).

1 cdxgen --deep --spec - version 1.4 -r -o [output .cdx.json]
2 [source /path]

Listing 15.3: CdxGen Command for Source Scanning

15.1.2 GitHub Dependency Graph

GDG provides the functionality to generate an SBOM in the form of an SPDX JSON file.
This feature is integrated within the Dependency Graph, accessible from the insights tab
of a GitHub repository. GitHub enables users to export an SBOM for the current main
branch of the repository, indicating that the generation process is entirely managed by
GitHub. However, a notable limitation is the absence of an option to retrieve an SBOM
for a different branch, commit, release, or tag. As of now, the GitHub Dependency Graph
supports 13 different package managers across 17 different programming languages. [20]

Source Scan

Of the 174 GitHub repositories analyzed, SBOMs generated by GDG were available for 171
projects. GitHub has this feature enabled by default, but it can be disabled by the project
maintainer, making the feature unavailable. Consequently, SBOMs were not available

54

15 Appendix

for the projects TomEE, Friendica, and ClamAV. All available SBOMs contained at least
one dependency. Furthermore, 126 SBOMs included 10 or more dependencies, and 75
contained over 100 dependencies.

15.1.3 Microsoft SBOM Tool

The MST SBOM Tool is an SBOM generation tool released by Microsoft under the MIT
license. The tool is developed in C# [21] and is built upon the Microsoft Component
Detection project, which predominantly utilizes C# and supports 11 different ecosystems.
For component detection within Linux environments, such as Debian, Alpine, or Fedora,
it leverages Syft [18]. The tool exclusively produces SBOMs in the SPDX format.

Unique to the MST is its requirement for specifying certain parameters that are incor-
porated into the resulting SBOM. These parameters include the package name, supplier,
namespace base URI, and package version. For the production of the sample data, version
1.1.8 of the MST was employed.

Container Scan

The MST was successfully applied to all 205 subject projects. Notably, it was capable of
generating an SBOM for the scratch tag, a special reserved tag in the Docker ecosystem
that enables the building of a container from scratch. Each generated SBOM contains at
least one dependency. Of these SBOMs, 159 included more than 10 dependencies, and
122 documented more than 100 dependencies. The following command was employed to
generate the sample SBOMs (see listing 15.4).

1 sbom -tool generate -di [container] -m
2 [output /path]-pn [packageName] -pv [PackageVersion]
3 -ps [supplier] -nsb [namespace URI]

Listing 15.4: MST container command

Release Scan

The MST was capable of generating an SBOM for all 117 subject projects during the release
phase. Although a SBOM was produced for every release project, it is notable that each
SBOM documented only a single dependency referring to the scanned project and not a
dependency. The following command was employed to generate the sample SBOMs (see
listing 15.5).

1 sbom -tool generate -b [output /path] -bc
2 [input/path] -pn [packageName] -ps [supplier]
3 -nsb [namespace URI] -pv [PackageVersion]

Listing 15.5: MST release command

55

15 Appendix

Source Scan

The MST successfully generated an SBOM for each of the 174 subject projects during the
source phase. Every SBOM listed at least one dependency. Of these, 99 SBOMs identified
more than 10 dependencies, while 64 SBOMs enumerated more than 100 dependencies.
The following command was employed to generate the sample SBOMs (see listing 15.6).

1 sbom -tool generate -b [output /path] -bc
2 [input/path] -pn [packageName] -pv [packageVersion]
3 -ps [supplier] -nsb [namespace URI]

Listing 15.6: MST source command

15.1.4 ScanCode Toolkit

ScanCode Toolkit is a tool developed and maintained by NexB under an Apache-2.0
license. It is a part of a broader ecosystem offered by the company for products in the
field of SCA and is primarily written in Python. The ScanCode Toolkit claims support for
116 different programming languages, build tools, and package formats. While ScanCode
can generate SBOMs in SPDX and CycloneDX formats, it does not support the SPDX
format in JSON. Unfortunately we were not able to implement a conversion from the RDF
supported SPDX output generated by ScanCode to the JSON SPDX output. Therefore,
for this thesis, the CycloneDX output was converted to SPDX. It is also noteworthy that
ScanCode also produced an invalid metadata properties object, rendering it incompatible
for use with other tools, for instance, in converting the SBOMs from CycloneDX to SPDX.
This metadata object was fixed before conversion from SPDX to CycloneDx. ScanCode
Toolkit version 32.0.6 was employed to generate the sample data. [23]

Source Scan

ScanCode Toolkit was successful in generating SBOMs for 162 out of the 174 subject
projects. The generation process with ScanCode is resource-intensive, and the procedure
was carried out using 8 threads. All of the 12 projects that did not yield an SBOMs
reached the 1-hour timeout threshold, leading to the termination of the process. The
affected projects include mono, node, mysql, open-liberty, openjdk, mongo, percona,
amazoncorretto, arangodb, gcc, odoo, and sapmachine. Among the completed SBOMs,
126 listed at least one dependency, 33 contained 10 or more dependencies, and 10 SBOMs
documented more than 100 dependencies.

1 scancode -clpi -n 8 --cyclonedx [output .cdx.json] [sources]

Listing 15.7: ScanCode source command

15.1.5 Syft

Syft is a SBOMs generation tool primarily written in Go and released under the Apache-2.0
license. Developed and maintained by Anchore, it is part of their suite of products aimed

56

15 Appendix

at enhancing software supply chain security. As a CLI tool, Syft facilitates the generation
of SBOMs from container images and file systems. The tool supports up to 23 different
ecosystems and provides output in various formats, including CycloneDX and SBOM.
While Syft can convert between different SBOMs formats, this functionality is currently
marked as experimental [18]. Additionally, Syft has the capability to export SBOMs in
multiple formats simultaneously, as demonstrated in the commands 15.8, 15.9, and 15.10.
For the creation of the sample data in this study, version v0.85.0 of Syft was utilized.

Container Scan

Syft successfully generated SBOMs for 204 out of the 205 container images examined.
The exception was the scratch tag, for which a pointer exception was logged instead of
producing an SBOM. Among the 204 SBOMs produced, 196 list at least one dependency,
193 include at least 10 dependencies, and 170 feature more than 100 dependencies. The
command used to generate these samples is shown in Listing 15.8.

1 syft [container] -o spdx -json =[output .spdx.json] -o
2 cyclonedx -json =[output .cdx.json]

Listing 15.8: Syft container command

Release Scan

Syft managed to generate SBOMs for all 117 releases from the selected projects. However,
98 of these SBOMs did not list any dependencies. Of the remaining SBOMs, 19 include at
least one dependency, 10 document at least 10 dependencies, and 3 detail more than 100
dependencies. The command utilized for generating these samples is provided in Listing
15.9.

1 syft [release .path] -o spdx -json =[output .spdx.json] -o
2 cyclonedx -json =[output .cdx.json]

Listing 15.9: Syft release command

Source Scan

Syft successfully generated an SBOM for all 174 subject projects from their source code.
Out of the generated SBOMs 118 contain at least one dependency. Of these, 103 SBOMs
include more than 10 dependencies, and 74 have more than 100 dependencies. The
command used to generate the samples is presented in Listing 15.10.

1 syft [sources .path] -o spdx -json =[output .spdx.json] -o
2 cyclonedx -json =[output .cdx.json]

Listing 15.10: Syft source command

57

15 Appendix

15.1.6 Tern

Tern is a tool designed for inspecting software packages within containers that also has
the capability to generate SBOMs. It is primarily developed in Python and backed by the
community. The tool is distributed under the BSD-2-Clause License. Although its primary
function is to scan container images, it can be enhanced with the ScanCode Toolkit to yield
more detailed information. Tern supports several output formats, including CycloneDX
and SPDX. For generating the sample data, version 2.12.1 of Tern was utilized. [24]

Container Scan

Tern succeeded in generating an SBOM for 177 of the 205 subject projects. Each SBOM
contained at least one listed dependency. Among these, 164 SBOMs included more than
10 dependencies, and 145 listed more than 100 dependencies. The following command
was used to generate the samples (see listing 15.11).

1 tern report -f spdxjson -i [container]
2 -o [output .spdx.json]
3

4 tern report -f cyclonedxjson -i [container]
5 -o [output .cdx.json]

Listing 15.11: Tern container command

15.1.7 Trivy

Trivy is a comprehensive security scanner that is published under the Apache-2.0 li-
cense and is developed and maintained by Aqua Security. Trivy has the capability to
scan container images, filesystems, Git repositories, virtual machine images, Kubernetes
clusters, and AWS environments. It is not limited to the generation of SBOMs but also
facilitates the search for CVEs, infrastructure as code (IaC) issues, analysis searching for
misconfigurations, and detecting sensitive information, in addition to identifying software
licenses. Predominantly written in Go, Trivy supports twelve different programming
languages, seventeen different operating system distributions, and six different IaC and
configuration languages. Furthermore, Trivy offers support for output in various SBOM
formats, including SPDX and CycloneDX. For the generation of the sample data in this
study, Trivy version 0.43.1 was utilized. [17]

Container Scan

Trivy was capable of generating an SBOM for 204 of the 205 subject project containers. It
appropriately failed to generate an SBOM for one container, specifically the scratch tag,
providing an error message indicating that the image was not available. All the scanned
containers contained at least one dependency. Among these, 194 SBOMs listed more than
10 dependencies, and 167 listed more than 100 dependencies. The commands used to
generate the sample SBOMs are listed below (see listing 15.12).

58

15 Appendix

1 trivy image --format spdx -json --output [output .spdx.json]
2 [container]
3

4 trivy image --format cyclonedx --output [output .cdx.json]
5 [container]

Listing 15.12: Trivy container command

Release Scan

Trivy was able to generate an SBOM for 116 of the 117 subject project releases. Trivy
crashed after 46 minutes while generating a SBOM for the jetty projects release files
without logging a reason. Each of the generated SBOMs contained only one dependency.
The commands used to generate the samples are listed below (see listing 15.13).

1 trivy fs --format spdx -json --output [output .spdx.json]
2 [release .path]
3

4 trivy fs --format cyclonedx --output [output .cdx.json]
5 [release .path]

Listing 15.13: Trivy release command

Source Scan

Trivy successfully generated an SBOM for 168 out of the 174 subject project sources. It
failed to generate an SBOM for the projects Keycloak, Silverpeas, TomEE, and Nuxeo due
to a fatal error encountered while reading a pom.xml file. For the projects Xwiki and
Geonetwork, the generation process exceeded the timeout of 1 hour. All of the SBOMs
contained at least one dependency. Of the generated SBOMs, 89 listed more than 10
dependencies, and 58 listed more than 100 dependencies. The following commands were
used to generate the samples (see listing 15.14).

1 trivy fs --format spdx -json --output [output .spdx.json]
2 [sources .path]
3

4 trivy fs --format cyclonedx --output [output .cdx.json]
5 [sources .path]

Listing 15.14: Trivy Source Command

59

15 Appendix

15.2 Detailed Data on SBOM Assessment

NTIA minimum elements SPDX coverage

Generator
Su

pp
li

er
N

am
e

C
om

po
ne

nt
N

am
e

Ve
rs

io
n

of
C

om
po

ne
nt

O
th

er
un

iq
ue

Id
en

ti
fi

er
s

D
ep

en
ce

nc
y

R
el

at
io

ns
hi

p

A
ut

ho
r_

of
SB

O
M

_d
at

a

T
im

es
ta

m
p

CdxGen* 0% 100% 100% 100% 100% 100% 100%
MST 100% 100% 100% 100% 100% 100% 100%

C
on

ta
in

er

Syft 0% 100% 99% 100% 100% 100% 100%
Tern 65% 100% 100% 100% 100% 100% 100%
Trivy 99% 100% 99% 100% 100% 100% 100%
CdxGen* 0% 100% 100% 100% 100% 100% 100%
MST 100% 100% 100% 100% 100% 100% 100%

R
el

ea
se

Syft 0% 100% 99% 100% 100% 100% 100%
Trivy 0% 100% 0% 100% 100% 100% 100%
CdxGen* 0% 100% 100% 100% 100% 100% 100%
GDG 100% 100% 100% 100% 0% 100% 100%

So
u

rc
e

MST 100% 100% 100% 100% 100% 100% 100%
ScanCode* 0% 100% 97% 100% 100% 100% 100%
Syft 0% 100% 84% 100% 100% 100% 100%
Trivy 97% 100% 96% 100% 100% 100% 100%
Total 49% 100% 97% 100% 93% 100% 100%

Table 15.1: NTIA minimum elements SPDX coverage

Table 15.1 presents the coverage of the NTIA minimum elements on the SPDX SBOM
samples. For the mapping between the NTIA minimum elements and the SPDX schema,
the published mapping table by SPDX was used [46].

60

15 Appendix

NTIA minimum elements CycloneDX coverage

Generator

Su
pp

li
er

N
am

e

C
om

po
ne

nt
N

am
e

Ve
rs

io
n

of
C

om
po

ne
nt

O
th

er
un

iq
ue

Id
en

ti
fi

er
s

D
ep

en
ce

nc
y

R
el

at
io

ns
hi

p

A
ut

ho
r_

of
SB

O
M

_d
at

a

T
im

es
ta

m
p

CdxGen 0% 100% 100% 100% 100% 100% 100%
MST* 0% 100% 100% 100% 0% 0% 100%

C
on

ta
in

er

Syft 0% 100% 99% 100% 0% 0% 100%
Tern 0% 100% 100% 100% 0% 0% 100%
Trivy 52% 100% 100% 99% 100% 0% 100%
CdxGen 0% 100% 100% 100% 100% 100% 100%
MST* 0% 100% 100% 100% 0% 0% 100%

R
el

ea
se

Syft 0% 100% 100% 100% 0% 0% 100%
Trivy 0% 0% 0% 0% 0% 0% 100%
CdxGen 0% 100% 100% 100% 100% 100% 100%
GDG* 0% 100% 96% 100% 0% 0% 100%

So
u

rc
e

MST* 0% 100% 100% 100% 0% 0% 100%
ScanCode 0% 100% 97% 100% 100% 0% 100%
Syft 0% 100% 84% 100% 0% 0% 100%
Trivy 0% 100% 95% 95% 100% 0% 100%
Total 20% 100% 97% 99% 46% 19% 100%

Table 15.2: NTIA minimum elements CycloneDX coverage

Table 15.2 presents the coverage of the NTIA minimum elements on the CycloneDX
SBOM samples. For the mapping between the NTIA minimum elements and the Cy-
cloneDX schema, the published mapping table by CycloneDX was used [34].

61

15 Appendix

SPDX SBOM Scorecard

Generator

Su
pp

or
te

d

To
ta

l

C
om

pl
ia

nc
e

Pa
ck

ag
e-

Id
en

t.

Pa
ck

ag
e-

ve
rs

io
ns

Pa
ck

ag
e-

li
ce

ns
es

C
re

at
io

n-
in

fo

CdxGen* 100% 59% 100% 0% 92% 3% 100%
MST 100% 60% 100% 0% 100% 0% 100%

C
on

ta
in

er

Syft 100% 92% 100% 93% 95% 72% 100%
Tern 100% 71% 100% 0% 100% 59% 100%
Trivy 100% 72% 100% 0% 93% 66% 100%
CdxGen* 100% 40% 100% 0% 4% 0% 100%
MST 100% 60% 100% 0% 100% 0% 100%

R
el

ea
se

Syft 100% 47% 100% 15% 15% 8% 100%
Trivy 100% 40% 100% 0% 0% 0% 100%
CdxGen* 100% 60% 100% 0% 89% 15% 100%
GDG 100% 59% 100% 0% 78% 31% 80%

So
u

rc
e

MST 100% 60% 100% 0% 100% 0% 100%
ScanCode* 100% 48% 100% 0% 42% 0% 100%
Syft 100% 66% 100% 66% 57% 6% 100%
Trivy 100% 52% 100% 0% 52% 10% 100%
Total 100% 61% 100% 13% 73% 21% 99%

Table 15.3: SPDX SBOM Scorecard

Table 15.3 presents the results of the sample SPDX SBOMs applied to the SBOM
Scorecard project [31].

62

15 Appendix

CycloneDX SBOM Scorecard

Generator

Su
pp

or
te

d

To
ta

l

C
om

pl
ia

nc
e

Pa
ck

ag
e-

Id
en

t.

Pa
ck

ag
e-

ve
rs

io
ns

Pa
ck

ag
e-

li
ce

ns
es

C
re

at
io

n-
in

fo

CdxGen 100% 84% 100% 85% 85% 57% 93%
MST* 100% 76% 100% 99% 99% 0% 79%

C
on

ta
in

er

Syft 100% 87% 100% 88% 89% 65% 93%
Tern 100% 79% 100% 89% 88% 21% 98%
Trivy 100% 1% 5% 0% 0% 0% 0%
CdxGen 100% 41% 100% 4% 4% 0% 100%
MST* 100% 77% 100% 100% 100% 0% 80%

R
el

ea
se

Syft 100% 48% 100% 16% 15% 8% 100%
Trivy 100% 0% 0% 0% 0% 0% 0%
CdxGen 100% 69% 100% 72% 72% 14% 82%
GDG* 100% 65% 100% 80% 59% 14% 64%

So
u

rc
e

MST* 100% 69% 100% 86% 86% 0% 68%
ScanCode 100% 75% 100% 77% 41% 60% 99%
Syft 100% 56% 100% 50% 41% 4% 82%
Trivy 100% 1% 4% 0% 0% 0% 0%
Total 100% 57% 81% 59% 55% 18% 69%

Table 15.4: CycloneDX SBOM Scorecard

Table 15.4 presents the results of the sample CycloneDX SBOMs applied to the SBOM
Scorecard project [31]

63

15 Appendix

SPDX SBOMQS, Qualtity Metrics for SBOMs

Generator

Su
pp

or
te

d

To
ta

l

St
ru

ct
ur

al

N
T

IA
-m

in
.

Se
m

an
ti

c

Q
ua

li
ty

Sh
ar

in
g

CdxGen* 100% 6.20 10.00 8.23 1.78 3.33 10.00
MST 100% 6.37 10.00 8.89 3.33 2.56 10.00

C
on

ta
in

er

Syft 100% 8.31 10.00 9.40 6.22 6.91 10.00
Tern 100% 7.42 10.00 9.38 5.63 4.40 10.00
Trivy 100% 8.17 10.00 9.33 4.43 7.29 10.00
CdxGen* 100% 4.40 10.00 4.47 1.67 1.49 10.00
MST 100% 6.82 10.00 10.00 3.33 2.86 10.00

R
el

ea
se

Syft 100% 4.90 10.00 5.04 2.41 2.19 10.00
Trivy 100% 5.68 10.00 7.14 1.67 2.86 10.00
CdxGen* 100% 6.38 10.00 8.12 2.14 3.86 10.00
GDG 100% 6.48 10.00 8.27 4.38 3.07 10.00

So
u

rc
e

MST 100% 6.54 10.00 9.14 3.33 2.86 10.00
ScanCode* 100% 5.57 10.00 7.11 1.67 2.54 10.00
Syft 100% 6.24 10.00 7.07 3.18 4.04 10.00
Trivy 100% 6.57 10.00 7.89 2.00 4.75 10.00
Total 100% 6.45 10.00 8.14 3.28 3.85 10.00

Table 15.5: SPDX SBOMQS, Qualtity Metrics for SBOMs

Table 15.5 presents the results of the sample SPDX SBOMs applied to the SBOMQS
project [32].

64

15 Appendix

CycloneDX SBOMQS, Qualtity Metrics for SBOMs

Generator

Su
pp

or
te

d

To
ta

l

St
ru

ct
ur

al

N
T

IA
-m

in
.

Se
m

an
ti

c

Q
ua

li
ty

Sh
ar

in
g

CdxGen 100% 7.00 10.00 7.15 5.35 6.86 0.00
MST* 100% 5.36 10.00 7.14 3.33 2.56 0.00

C
on

ta
in

er

Syft 100% 7.64 10.00 7.14 5.17 8.94 0.00
Tern 100% 5.95 10.00 5.85 4.38 5.26 0.00
Trivy 100% 7.26 7.50 9.28 6.16 6.60 0.00
CdxGen 100% 3.51 10.00 3.03 1.74 1.55 0.00
MST* 100% 5.45 10.00 7.14 3.33 2.86 0.00

R
el

ea
se

Syft 100% 5.25 10.00 5.92 3.38 3.41 0.00
Trivy 100% 4.55 7.50 5.71 3.33 2.86 0.00
CdxGen 100% 6.48 10.00 7.45 4.81 5.14 0.00
GDG* 100% 6.00 10.00 6.84 4.30 4.47 0.00

So
u

rc
e

MST* 100% 5.45 10.00 7.14 3.33 2.86 0.00
ScanCode 100% 6.38 10.00 5.68 5.03 6.49 0.00
Syft 100% 6.00 10.00 6.50 3.47 5.16 0.00
Trivy 100% 5.70 7.50 7.31 3.66 4.76 0.00
Total 100% 6.01 9.5 6.77 4.19 4.90 0.00

Table 15.6: CycloneDX SBOMQS, Qualtity Metrics for SBOMs

Table 15.6 presents the results of the sample CycloneDX SBOMs applied to the SBOMQS
project [32].

65

15 Appendix

15.3 Excurs Dependency insights

15.3.1 Differences in Dependency Enrichment

Comparing the results generated by the different tools, it becomes evident that while
all tools adhere to the respective standardizations, the results vary significantly by how
differently they enrich the dependencies. These variations are influenced by the soft-
ware development lifecycle phase and the SBOM generator’s capabilities in capturing all
functionalities.

An illustrative example involves comparing SBOMs generated by different tools across
various stages of the software development lifecycle based on the same sample project.
Detailed comparisons of these findings are published separately in a blog post [6]. Notably,
all tools across all development phases consistently identified no single dependency. The
differences in the investigated tooling methodologies are too significant, so no overall
example could be picked to investigate the differences. Consequently, different dependen-
cies were selected for illustrative purposes. For instance, Apache Commons-Compress,
used in the SBOMs generated for the Jenkins project, was not detected by ScanCode, Tern,
and MST Container Scan. However, Apache Commons-Compress was detected by all
other generators in all phases and is, therefore, one of the most extensive intersecting
dependencies among all generated samples. Alternative examples were chosen for the
missing generators.

The results generated by CdxGen show similar results for the detected Apache Commons-
Compress dependency in both Container and Release scans. However, significant differ-
ences are observed compared to the results derived from the Source scan. This might be
due to the fact that the sources provide a reference to the Maven repository, where the
SBOM can be enriched with additional information. In the Sources, the license informa-
tion, hashes, and description are the main advantages over the container and release scans.
CdxGen does not support SPDX output. For this reason, the SBOMs were converted based
on the CycloneDX SBOM.

GDG provides an SPDX SBOM with the basic information needed for the major use
cases of checking the version of a dependency together with a valid PURL to identify the
dependency and retrieve the license information.

Unfortunately, MST was not able to detect the Apache Commons-Compress dependency
in the container scan but only in the sources. MST was also not able to detect any
dependencies in the release files. Nevertheless, the provided information in the container
and sources phase is semantically identical. While MST provides a valid PURL and
Version for their enumerated dependencies, no license information is provided in the
examples.

The ScanCode SBOMs were generated based on CycloneDX and converted to SPDX.
ScanCode was also not able to detect Apache Commons-Compress in the source code.
Therefore, another dependency was picked as an example. While the information looks
well enriched, the data quality could be better. Optional values like comments or copyright
are initialized with null, and the version information is provided by a variable that might
be based on a Maven abstraction to define versions in a unified way across all POM files.

66

15 Appendix

Also, the depth of the scan conducted to detect dependencies needs to be improved. Only
Jenkins-related libraries are listed, but no maven-imported dependencies.

Syft provides a well-enriched experience in both SPDX and CycloneDx. It supports
both output formats and provides lots of information, such as several external reference
locators of type PURL and CPE. They also made transparent how they collected this
information. The sources are based on the POM file, while the container and release
are derived from the installed Java archives that could be discovered during analysis.
However, while Syft can also read the POM file, it does not use this information, like
CdxGen, to enrich the SBOM with additional information from the package registry, such
as hashes or licensing information (This feature could be enabled in Syft, but is disabled
in the standard configuration). Also, the container and release scan refer to the Apache
2.0 license by URL and not by identifier. This makes it especially challenging to process
the SPDX results. While the URL to the license is readable in the CycloneDX output, it is
malformed in the SPDX output.

While Tern supports both the output in SPDX and CycloneDx, the experience with
SPDX is much better than the CycloneDX output. The SPDX output provides a comment,
supplier, and copyright Text, all of which are missing in the CycloneDX output. The
CycloneDX result only contains name, PURL, type, and version of the dependency.

Trivy successfully identified dependencies in the containers and source phase but
not in the release phase. Although it detected the majority of fundamental details, the
license information was the only aspect missing in this case. It was also the only tool
that generated the field primaryPackagePurpose. While it makes the information source
transparent in the CycloneDX files based on the dependency detected, such as the JAR or
POM files, this information is not added in the SPDX file.

15.3.2 Jenkins Example

In Table 15.7, the distribution of detected resources within the Jenkins sample project is
presented. This distribution is segregated according to the different phases of the software
development lifecycle during which the SBOM was generated. It is further categorized
by the type of resources listed as dependencies. For instance, Java resources based on
Maven were detected in all phases, with a predominant presence in the source phase. This
discrepancy can be attributed to several factors. During the Container and Release phases,
SBOM generators are required to analyze each JAR file to extract dependency information.
In contrast, during the source phase, the build system, such as Maven, can be directly
queried for this information, leading to different methodologies in extracting dependency
data. Moreover, source files may reference dependencies that are not included in the final
product, such as test dependencies like JUnit.

The observed variance in the detected quantity of dependencies is largely explainable
by the depth at which tools search for dependencies. ScanCode only listed packages
produced by the project itself, excluding imported dependencies. Tools like Syft and
GDG disclose first-level dependencies, whereas CdxGen also enumerates transitive de-
pendencies. However, the distinction between transitive and non-transitive dependencies
becomes blurred in Java projects when analyzing release files or container images, as all

67

15 Appendix

Jenkins SPDX PURL grouped by type
Container Release Source

Type
C

d
xG

en

M
ST

Sy
ft

Te
rn

Tr
iv

y

C
d

xG
en

M
ST

Sy
ft

Tr
iv

y

C
d

xG
en

G
D

G

M
ST

Sc
an

C
od

e

Sy
ft

Tr
iv

y

apk

xx
xx

xx
xx

xx
xx 14 xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

deb

xx
xx

15
6

15
6

15
6

15
6

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

generic

xx
xx

xx
xx 1

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

github

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx 8

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

ghactions

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx 11 xx
xx

xx
xx

xx
xx

xx
xx

golang

xx
xx

xx
xx 26 xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

maven 94 xx
xx

30
0

xx
xx

16
7

92 xx
xx

27
7

xx
xx

25
2

10
4

24
0 8 17
4

80

npm

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

66
2

72
1

66
2 1 66
1

13

oci

xx
xx

xx
xx

xx
xx

xx
xx 1

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

rpm 22
9

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx 2

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

swid

xx
xx 1

xx
xx

xx
xx

xx
xx

xx
xx 1

xx
xx

xx
xx

xx
xx

xx
xx 1

xx
xx

xx
xx

xx
xx

Table 15.7: Jenkins SPDX PURL grouped by type

utilized libraries are stored collectively. As a result, tools like Syft and Trivy inadvertently
catalog transitive dependencies in the release and container SBOMs, whereas they are not
included in the sources.

While several scanners successfully identified Java dependencies in release or container
scans, none were able to detect npm packages in the container or release files.

Despite JavaScript not being compiled into binary, it remains challenging to ascertain
precisely which libraries were utilized in building a JavaScript application.

Additionally, Syft was the only scanner that detected Go packages in the container
image. Upon manual verification of the asserted references, binaries based on Go were
indeed present in the container’s base image.

Both CdxGen and GDG listed GitHub actions in their results. Although they refer
to identical actions, such as githubaction/checkout, they employ different typenames to
describe them in the PURL.

While all container-based SBOMs list the packages that are installed on the base image,
tern is the only one to add apk / debian packages to the SBOM. While all the generators
found the same DEB packages, only CdxGen referred to them as RPM packages. While
DEB is related to the Debian ecosystem and therefor to the base image of the container,

68

15 Appendix

Jenkins SPDX PURL grouped by type cleaned of duplicates
Container Release Source

Type
C

d
xG

en

M
ST

Sy
ft

Te
rn

Tr
iv

y

C
d

xG
en

M
ST

Sy
ft

Tr
iv

y

C
d

xG
en

G
D

G

M
ST

Sc
an

C
od

e

Sy
ft

Tr
iv

y

apk

xx
xx

xx
xx

xx
xx 14 xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

deb

xx
xx

15
6

15
6

15
6

15
6

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

generic

xx
xx

xx
xx 1

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

github

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx 8

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

ghactions

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx 11 xx
xx

xx
xx

xx
xx

xx
xx

golang

xx
xx

xx
xx 26 xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

maven 94 xx
xx

22
7

xx
xx

14
4

92 xx
xx

21
7

xx
xx

25
2

10
4

24
0 8 13
2

80

npm

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

66
2

72
1

66
2 1 66
1

13

oci

xx
xx

xx
xx

xx
xx

xx
xx 1

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

rpm 22
9

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx 2

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

swid

xx
xx 1

xx
xx

xx
xx

xx
xx

xx
xx 1

xx
xx

xx
xx

xx
xx

xx
xx 1

xx
xx

xx
xx

xx
xx

Table 15.8: Jenkins SPDX PURL grouped by type cleaned of duplicates

RPM refferes to the RedHad package manager for RedHad Enterprice Linux. Validating
the results CdxGen lists the same image ID hash as the other SBOMs do, which refers to
the Debian jenkins container. Looking into the list of dependencies, CdxGen listed to
packages like pkg:rpm/apt. Packages like apt do not exist in the RPM ecosystem but in the
Debian world. Therefor this behavior must be related to a bug in CdxGen. It was also
checked, that this error was not introduced by the convertion from CycloneDX to SPDX,
but the PURL with the rpm types are also listed in the original CycloneDX SBOMs.

Comparing the list in Table 15.7 with the list in Table 15.8, where duplicate depen-
dencies are removed by PURL, it is noteworthy that dependencies with different versions
were not eliminated in this tables. It can be seen that, while all dependencies found
remain exactly the same, the Maven dependencies from Syft in all phases and the Trivy
dependencies from Maven in the container phase are reduced due to the removal of
duplicates. This highlights the different methodologies that can be applied regarding
duplicate dependencies in a SBOM.

69

15 Appendix

All SPDX PURLs grouped by type
Container Release Source

Type
C

d
xG

en

M
ST

Sy
ft

Te
rn

Tr
iv

y

C
d

xG
en

M
ST

Sy
ft

Tr
iv

y

C
d

xG
en

G
D

G

M
ST

Sc
an

C
od

e

Sy
ft

Tr
iv

y

clojars X X
github¹ X X X
gem X X X X X X X X X X
pypi X X X X X X X X X X X
composer X X X X X X X X
golang X X X X X X X X X X
npm X X X X X X X X X X
maven X X X X X X X X X X X
rpm X X X X X X X
swid X X X
deb X X X X X
cran X
alpm X X
generic X X
nuget X X X X X X X
apk X X X
oci X
none X
hex X X X
pub X
hackage X X
cargo X X X X X X
bazel X
haxe X
opam X
jar X
ha1e X
bower X
autotools X
dart X
osgi X
alpine X
conan X
pkg: X

| X < 10 | X < 100 | X < 1.000 | X <10.000 | X < 100.000 |
¹ Github and Githubactions were consolidated in this table.

Table 15.9: All SPDX PURLs grouped by type

70

15 Appendix

15.3.3 Generalising to all Samples

Generalizing the findings from individual examples to an evaluation across all samples,
Table 15.9 presents a comprehensive list of PURL types identified across all projects.
These types are categorized based on the different phases and the generators that detected
them. The check icons in the table are color-coded to represent the quantity of packages
identified by each generator for a particular type.

The majority of the findings were obtained during the sources phase. While ScanCode
may not delve as deeply into the dependency chain, as previously demonstrated, it boasts
support for the broadest range of diverse ecosystems. Beyond ScanCode, there is a general
consensus among the different generators regarding the tooling supported in the sources
phase.

Although there are tools that stand out in the data for their support of a specific
programming language or build system that is not covered by any other tool.

Investigating the Container phase, it becomes evident that MST’s primary focus lies in
the detection of packages associated with the base image of the container. On the other
hand, Tern is also centered around analyzing the setup of the base image but exhibits
the ability to identify several related packages such as Python, Ruby, and NPM. Tern’s
success is attributed to its capability to identify packages that were not only shipped
with the project but also installed within the container itself. Taking this ability a step
further, tools like CdxGen, Syft, and Trivy delve deeper into the examination, enabling
the detection of packages spanning various programming languages and tools.

In examining the outcomes of the release phase, the most sobering findings can be
observed. MST supplied only a SWID tag, which was not detected but defined by the MST.
This tool generates a SWID tag in the form of a dependency for each project. However,
these tags refer back to the project itself rather than to a related dependency. Only
CdxGen and Syft yielded meaningful results. The most reliable findings pertained to the
Java-related Maven ecosystem.

71

List of Figures

8.1 Keycloak Dependency Plot SPDX by Ref . 30

List of Listings

15.1 CdxGen container comand . 53
15.2 CdxGen Command for Release Scanning . 54
15.3 CdxGen Command for Source Scanning . 54
15.4 MST container command . 55
15.5 MST release command . 55
15.6 MST source command . 56
15.7 ScanCode source command . 56
15.8 Syft container command . 57
15.9 Syft release command . 57
15.10Syft source command . 57
15.11Tern container command . 58
15.12Trivy container command . 59
15.13Trivy release command . 59
15.14Trivy Source Command . 59

List of Tables

6.1 Generator Spesifications . 15
6.2 Supported languages by Generator . 16
6.3 Generation Summary . 17
6.4 Generator Average Execution Time . 17

7.1 CyclonoeDx overall enrichment . 20
7.2 SPDX overall enrichment . 20
7.3 Version coverage . 21
7.4 NTIA minimum elements mapping . 23

8.1 Keycloak distinct Dependencies over all SBOMs by different identifiers . . 29
8.2 Metrics detailed view . 33
8.3 Metric phase view . 36

9.1 CycloneDX and SPDX License Coverage . 38
9.2 CycloneDX Licenses Coverage by Language 40

72

List of Tables

9.3 SPDX License Values . 41
9.4 CycloneDX License Values . 41

10.1 SPDX Relationships . 43

15.1 NTIA minimum elements SPDX coverage 60
15.2 NTIA minimum elements CycloneDX coverage 61
15.3 SPDX SBOM Scorecard . 62
15.4 CycloneDX SBOM Scorecard . 63
15.5 SPDX SBOMQS, Qualtity Metrics for SBOMs 64
15.6 CycloneDX SBOMQS, Qualtity Metrics for SBOMs 65
15.7 Jenkins SPDX PURL grouped by type . 68
15.8 Jenkins SPDX PURL grouped by type cleaned of duplicates 69
15.9 All SPDX PURLs grouped by type . 70

73

Bibliography

[1] 14:00-17:00. ISO/IEC 19770-2:2015. ISO. url: https://www.iso.org/standard/
65666.html (visited on 11/24/2023).

[2] 14:00-17:00. ISO/IEC 5962:2021. ISO. url: https://www.iso.org/standard/
81870.html (visited on 03/24/2023).

[3] Are SBOMs Any Good? Preliminary Measurement of the Quality of Open Source Project
SBOMs. url: https://www.chainguard.dev/unchained/are-sboms-any-good-
preliminary-measurement-of-the-quality-of-open-source-project-sboms
(visited on 03/18/2023).

[4] Are SBOMs Good Enough for Government Work? url: https://www.chainguard.
dev/unchained/are- sboms- good- enough- for- government- work (visited on
03/18/2023).

[5] M. Biebel. Converting SBOMs between SPDX and CycloneDx. Sept. 27, 2023. url:
https : / / mariuxdeangelo . gitlab . io / website / # / post / 20230925 - SBOM -
Convertion-Tools (visited on 11/04/2023).

[6] M. Biebel. SBOM dependency semantics in SPDX and CycloneDx. Sept. 24, 2023.
url: https://mariuxdeangelo.gitlab.io/website/#/post/20230924-SBOM-
dependency-semantics-SPDX-and-CycloneDx (visited on 11/04/2023).

[7] chainguard-dev/bom-shelter. Feb. 13, 2023. url: https://github.com/chainguard-
dev/bom-shelter (visited on 03/19/2023).

[8] Convertion Bom-squad SBOM Convert CLI. Aug. 18, 2023. url: https://github.
com/bom-squad/sbom-convert (visited on 09/03/2023).

[9] Convertion cdx2spdx. Aug. 29, 2023. url: https://github.com/spdx/cdx2spdx
(visited on 09/03/2023).

[10] Convertion CycloneDx CLI. Aug. 31, 2023. url: https://github.com/CycloneDX/
cyclonedx-cli (visited on 09/03/2023).

[11] CRA EU. url: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=
CELEX:52022PC0454 (visited on 11/24/2023).

[12] CRA EU Cyber Resilience Act | Shaping Europe’s digital future. url: https://digital-
strategy . ec . europa . eu / en / policies / cyber - resilience - act (visited on
11/24/2023).

[13] Cybersecurity Mobilisation Plan Open Source Security Foundation (OpenSSF). Open
Source Security Foundation. May 13, 2022. url: https://openssf.org/oss-
security-mobilization-plan/ (visited on 11/24/2023).

[14] CycloneDX project History. url: https://cyclonedx.org/about/history/ (visited
on 05/05/2023).

74

https://www.iso.org/standard/65666.html
https://www.iso.org/standard/65666.html
https://www.iso.org/standard/81870.html
https://www.iso.org/standard/81870.html
https://www.chainguard.dev/unchained/are-sboms-any-good-preliminary-measurement-of-the-quality-of-open-source-project-sboms
https://www.chainguard.dev/unchained/are-sboms-any-good-preliminary-measurement-of-the-quality-of-open-source-project-sboms
https://www.chainguard.dev/unchained/are-sboms-good-enough-for-government-work
https://www.chainguard.dev/unchained/are-sboms-good-enough-for-government-work
https://mariuxdeangelo.gitlab.io/website/#/post/20230925-SBOM-Convertion-Tools
https://mariuxdeangelo.gitlab.io/website/#/post/20230925-SBOM-Convertion-Tools
https://mariuxdeangelo.gitlab.io/website/#/post/20230924-SBOM-dependency-semantics-SPDX-and-CycloneDx
https://mariuxdeangelo.gitlab.io/website/#/post/20230924-SBOM-dependency-semantics-SPDX-and-CycloneDx
https://github.com/chainguard-dev/bom-shelter
https://github.com/chainguard-dev/bom-shelter
https://github.com/bom-squad/sbom-convert
https://github.com/bom-squad/sbom-convert
https://github.com/spdx/cdx2spdx
https://github.com/CycloneDX/cyclonedx-cli
https://github.com/CycloneDX/cyclonedx-cli
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52022PC0454
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52022PC0454
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://openssf.org/oss-security-mobilization-plan/
https://openssf.org/oss-security-mobilization-plan/
https://cyclonedx.org/about/history/

Bibliography

[15] CycloneDX v1.4 Spesification JSON Reference. url: https://cyclonedx.org/docs/1.
4/json/#bomFormat (visited on 05/05/2023).

[16] Documentation around using PURLs as unique identifiers · Issue #242 · package-url/purl-
spec. GitHub. url: https://github.com/package-url/purl-spec/issues/242
(visited on 11/29/2023).

[17] Generator aquasecurity/trivy. July 10, 2023. url: https : / / github . com /
aquasecurity/trivy (visited on 07/10/2023).

[18] Generator Conversion anchore/syft. July 10, 2023. url: https : / / github . com /
anchore/syft (visited on 07/10/2023).

[19] Generator CycloneDX (cdxgen). July 8, 2023. url: https://github.com/CycloneDX/
cdxgen (visited on 07/08/2023).

[20] Generator github dependency graph. GitHub Docs. url: https://docs.github.com/
en/code-security/supply-chain-security/understanding-your-software-
supply-chain/about-the-dependency-graph (visited on 07/10/2023).

[21] Generator Microsoft SBOM Tool. July 3, 2023. url: https://github.com/microsoft/
sbom-tool (visited on 07/10/2023).

[22] Generator Scancode Output Formats — ScanCode-Toolkit documentation. url: https:
//scancode- toolkit.readthedocs.io/en/stable/cli- reference/output-
format.html?highlight=spdx#spdx-rdf-file (visited on 11/25/2023).

[23] Generator scancode-toolkit. url: https://github.com/nexB/scancode-toolkit
(visited on 07/10/2023).

[24] Generator Tern. July 9, 2023. url: https://github.com/tern-tools/tern (visited
on 07/10/2023).

[25] goneall. SPDX Understanding SPDX Profiles – SPDX. Oct. 9, 2023. url: https :
//spdx.dev/understanding-spdx-profiles/ (visited on 12/02/2023).

[26] C. C. W. Group. “CycloneDx Authoritative Guide to SBOM”. In: (June 5, 2023).

[27] M. Hatta. “The Nebraska problem in open source software development”. In: Annals
of Business Administrative Science 5 (Oct. 15, 2022). issn: 1347-4456, 1347-4464. doi:
10.7880/abas.0220914a. (Visited on 03/13/2023).

[28] S. Hendrick and V. Research. “Software Bill of Materials (SBOM) and Cybersecurity
Readiness”. In: (Jan. 2022).

[29] R. Hiesgen, M. Nawrocki, T. C. Schmidt, and M. Wählisch. Log4j The Race to the
Vulnerable: Measuring the Log4j Shell Incident. June 7, 2022. doi: 10.48550/arXiv.
2205.02544. arXiv: 2205.02544[cs]. url: http://arxiv.org/abs/2205.02544
(visited on 11/01/2023).

[30] T. W. House. Executive Order on Improving the Nation’s Cybersecurity. The White
House. May 12, 2021. url: https : / / www . whitehouse . gov / briefing - room /
presidential- actions/2021/05/12/executive- order- on- improving- the-
nations-cybersecurity/ (visited on 03/18/2023).

75

https://cyclonedx.org/docs/1.4/json/#bomFormat
https://cyclonedx.org/docs/1.4/json/#bomFormat
https://github.com/package-url/purl-spec/issues/242
https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/trivy
https://github.com/anchore/syft
https://github.com/anchore/syft
https://github.com/CycloneDX/cdxgen
https://github.com/CycloneDX/cdxgen
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://github.com/microsoft/sbom-tool
https://github.com/microsoft/sbom-tool
https://scancode-toolkit.readthedocs.io/en/stable/cli-reference/output-format.html?highlight=spdx#spdx-rdf-file
https://scancode-toolkit.readthedocs.io/en/stable/cli-reference/output-format.html?highlight=spdx#spdx-rdf-file
https://scancode-toolkit.readthedocs.io/en/stable/cli-reference/output-format.html?highlight=spdx#spdx-rdf-file
https://github.com/nexB/scancode-toolkit
https://github.com/tern-tools/tern
https://spdx.dev/understanding-spdx-profiles/
https://spdx.dev/understanding-spdx-profiles/
https://doi.org/10.7880/abas.0220914a
https://doi.org/10.48550/arXiv.2205.02544
https://doi.org/10.48550/arXiv.2205.02544
https://arxiv.org/abs/2205.02544 [cs]
http://arxiv.org/abs/2205.02544
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

Bibliography

[31] Metrics SBOM Scorecard. Oct. 6, 2023. url: https://github.com/eBay/sbom-
scorecard (visited on 10/29/2023).

[32] Metrics sbomqs: Quality metrics for SBOMs. Oct. 16, 2023. url: https://github.
com/interlynk-io/sbomqs (visited on 10/29/2023).

[33] J. S. Meyers. How to Make High-Quality SBOMs. Open Source Security Foundation.
Mar. 2, 2023. url: https://openssf.org/blog/2023/03/02/how-to-make-high-
quality-sboms/ (visited on 03/18/2023).

[34] NTIA Minimum Requirements OWASP CycloneDX Authoritative Guide to SBOM. url:
https://cyclonedx.org/guides/sbom/bom/ (visited on 08/25/2023).

[35] NTIA Minimum Requirements The Minimum Elements For a Software Bill of Materials
(SBOM) | National Telecommunications and Information Administration. url: https:
//www.ntia.gov/report/2021/minimum-elements-software-bill-materials-
sbom (visited on 03/18/2023).

[36] NTIA Minimum RequirementsAnnex K: How To Use SPDX in Different Scenarios -
specification v2.3.0. url: https://spdx.github.io/spdx-spec/v2.3/how-to-use/
(visited on 08/25/2023).

[37] M. Ohm, H. Plate, A. Sykosch, and M. Meier. Backstabber’s Knife Collection: A Review
of Open Source Software Supply Chain Attacks. May 19, 2020. doi: 10.48550/arXiv.
2005.09535. arXiv: 2005.09535[cs]. url: http://arxiv.org/abs/2005.09535
(visited on 03/22/2023).

[38] purl-spec/README.rst at master · package-url/purl-spec. GitHub. url: https : / /
github.com/package- url/purl- spec/blob/master/README.rst (visited on
11/29/2023).

[39] Report on the 2020 FOSS Contributor Survey. url: https://www.linuxfoundation.
org/resources/publications/foss-contributor-2020 (visited on 03/19/2023).

[40] SBOM Everywhere OSSF SIG Github. Mar. 18, 2023. url: https://github.com/
ossf/sbom-everywhere (visited on 03/19/2023).

[41] SBOM Everywhere Tooling Ecosystem working with CycloneDX. Google Docs.
url: https : / / docs . google . com / document / d / 1biwYXrtoRc _
LF7Pw10TO2TGIhlM6jwkDG23nc9M _ RiE / edit ? usp = embed _ facebook (visited on
07/13/2023).

[42] Snyk Terms of Service. Snyk. url: https://snyk.io/policies/terms-of-service/
(visited on 11/04/2023).

[43] SOFTWARE BILL OF MATERIALS | National Telecommunications and Information
Administration. url: https://ntia.gov/page/software-bill-materials (visited
on 03/18/2023).

[44] “Software Security in Supply Chains: Software Bill of Materials (SBOM)”. In: NIST
(May 3, 2022). (Visited on 03/18/2023).

[45] SPDX About. Software Package Data Exchange (SPDX). url: https://spdx.dev/
about/ (visited on 05/01/2023).

76

https://github.com/eBay/sbom-scorecard
https://github.com/eBay/sbom-scorecard
https://github.com/interlynk-io/sbomqs
https://github.com/interlynk-io/sbomqs
https://openssf.org/blog/2023/03/02/how-to-make-high-quality-sboms/
https://openssf.org/blog/2023/03/02/how-to-make-high-quality-sboms/
https://cyclonedx.org/guides/sbom/bom/
https://www.ntia.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://spdx.github.io/spdx-spec/v2.3/how-to-use/
https://doi.org/10.48550/arXiv.2005.09535
https://doi.org/10.48550/arXiv.2005.09535
https://arxiv.org/abs/2005.09535 [cs]
http://arxiv.org/abs/2005.09535
https://github.com/package-url/purl-spec/blob/master/README.rst
https://github.com/package-url/purl-spec/blob/master/README.rst
https://www.linuxfoundation.org/resources/publications/foss-contributor-2020
https://www.linuxfoundation.org/resources/publications/foss-contributor-2020
https://github.com/ossf/sbom-everywhere
https://github.com/ossf/sbom-everywhere
https://docs.google.com/document/d/1biwYXrtoRc_LF7Pw10TO2TGIhlM6jwkDG23nc9M_RiE/edit?usp=embed_facebook
https://docs.google.com/document/d/1biwYXrtoRc_LF7Pw10TO2TGIhlM6jwkDG23nc9M_RiE/edit?usp=embed_facebook
https://snyk.io/policies/terms-of-service/
https://ntia.gov/page/software-bill-materials
https://spdx.dev/about/
https://spdx.dev/about/

Bibliography

[46] SPDX specification v2.3.0. url: https://spdx.github.io/spdx- spec/v2.3/
(visited on 05/01/2023).

[47] S. Springett, D. Russo, G. Fick, J. Herz, J. Scott, et al. BOM Maturity Model. url:
https://scvs.owasp.org/bom- maturity- model/undefined/bom- maturity-
model/urn/owasp/scvs/bom/resource/software/evidence/identity/method/
value/ (visited on 12/04/2023).

[48] D. Waltermire, B. A. Cheikes, L. Feldman, and G. Witte. Guidelines for the Creation
of Interoperable Software Identification (SWID) Tags. NIST IR 8060. National Insti-
tute of Standards and Technology, Apr. 2016. doi: 10.6028/NIST.IR.8060. url:
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8060.pdf (visited on
12/04/2023).

[49] B. Xia, T. Bi, Z. Xing, Q. Lu, and L. Zhu. An Empirical Study on Software Bill of
Materials: Where We Stand and the Road Ahead. Feb. 7, 2023. doi: 10.48550/arXiv.
2301.05362. arXiv: 2301.05362[cs]. url: http://arxiv.org/abs/2301.05362
(visited on 03/13/2023).

[50] L. Zhao, S. Chen, Z. Xu, C. Liu, L. Zhang, et al. “Software Composition Analysis
for Vulnerability Detection: An Empirical Study on Java Projects”. In: Proceedings
of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ESEC/FSE 2023. New York, NY, USA:
Association for Computing Machinery, Nov. 30, 2023. isbn: 9798400703270. doi:
10.1145/3611643.3616299. url: https://dl.acm.org/doi/10.1145/3611643.
3616299 (visited on 12/11/2023).

77

https://spdx.github.io/spdx-spec/v2.3/
https://scvs.owasp.org/bom-maturity-model/undefined/bom-maturity-model/urn/owasp/scvs/bom/resource/software/evidence/identity/method/value/
https://scvs.owasp.org/bom-maturity-model/undefined/bom-maturity-model/urn/owasp/scvs/bom/resource/software/evidence/identity/method/value/
https://scvs.owasp.org/bom-maturity-model/undefined/bom-maturity-model/urn/owasp/scvs/bom/resource/software/evidence/identity/method/value/
https://doi.org/10.6028/NIST.IR.8060
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8060.pdf
https://doi.org/10.48550/arXiv.2301.05362
https://doi.org/10.48550/arXiv.2301.05362
https://arxiv.org/abs/2301.05362 [cs]
http://arxiv.org/abs/2301.05362
https://doi.org/10.1145/3611643.3616299
https://dl.acm.org/doi/10.1145/3611643.3616299
https://dl.acm.org/doi/10.1145/3611643.3616299

Glossary

CPE Common Platform Enumeration.
CRA Cyber Resiliance Act.
CVE Common Vulnerabilities and Exposures.
CWE Common Weakness Enumeration.
EO Executive Order.
EU European Union.
GDG Github Dependency Graph.
ITAM Information Technology Asset Management.
JSF JSON Signature Format.
MST Microsoft SBOM Tool.
NTIA National Telecommunications and Information Administration.
OWASP Open Worldwide Application Security Project.
PURL Package Uniform Resource Locator.
SBOM Software Bill of Materials.
SCA Software Composition Analysis.
SPDX Software Package Data Exchange.
SWID Software Identifier.

78

	Abstract
	1 Acknowledgements
	Abstract
	2 Abstract
	Inhaltsverzeichnis
	3 Introduction
	3.1 Motivation
	3.2 Related Work
	3.3 Research Goals

	4 SBOM Standards
	4.1 Software Package Data Exchange
	4.2 CycloneDX
	4.3 SWID

	5 Methodology
	5.1 Selection of Open Source Projects
	5.2 Selection of sbom Generators
	5.3 SBOM Quality Assessment
	5.3.1 Generation
	5.3.2 Conversion of SBOMs
	5.3.3 Interacting with SBOM Data

	6 SBOM Generators
	6.1 Generator Specifications
	6.2 Generation Summary

	7 SBOM Data Assessment
	7.1 SBOM Overall Enrichment
	7.1.1 CycloneDX Overall Enrichment
	7.1.2 SPDX Overall Enrichment

	7.2 SBOM Schema Compliance
	7.3 Current Quality Metricses
	7.3.1 NTIA minimum elements
	7.3.2 eBay SBOM Scorecard
	7.3.3 SBOMQS Quality Metrics for SBOMs

	8 Dependency Insights
	8.1 Dependency Intersections between SBOMs by Examples
	8.2 Quantifying the Intersecting Consensus
	8.3 Interpreting the Results

	9 SBOM License Insights
	9.1 SPDX License Features
	9.2 CycloneDX License Features
	9.3 Comparison of License Features

	10 SBOM Relationship Insights
	10.1 SPDX Relationships
	10.2 CycloneDX Dependency Relationships

	11 Results / Findings
	11.1 General Results
	11.1.1 SBOM Standards
	11.1.2 SBOM Generation
	11.1.3 SBOM Data Assessment
	11.1.4 SBOM insights

	11.2 Findings from a Developer Perspective
	11.3 Findings from a Consumer Perspective
	11.4 Findings for Generators
	11.5 Findings for Spesification Standardisation

	12 Limitations
	13 Further work
	14 Summary
	15 Appendix
	15.1 Details on SBOM Generation
	15.1.1 CdxGen
	15.1.2 GitHub Dependency Graph
	15.1.3 Microsoft SBOM Tool
	15.1.4 ScanCode Toolkit
	15.1.5 Syft
	15.1.6 Tern
	15.1.7 Trivy

	15.2 Detailed Data on SBOM Assessment
	15.3 Excurs Dependency insights
	15.3.1 Differences in Dependency Enrichment
	15.3.2 Jenkins Example
	15.3.3 Generalising to all Samples

	List of Figures
	List of Listings
	List of Tables
	Bibliography
	Glossary

