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ABSTRACT

With a market share of over 80%, Android has become an
industry standard not only for mobile devices. Mostly An-
droid is seen as an open-source project where everybody can
contribute and review the code. However, in practice, a lot
of the Android kernel and kernel-environments code gets
heavily customized by manufacturers, carriers, and vendors,
which can be hard to access for review. Such customizations
can pose a threat to the overall device security. Especially
drivers are affected by this customization process and can
cause serious vulnerabilities. This paper will show different
perspectives on the Android device development process, fo-
cusing on device drivers, how security research approaches
drivers, and how attackers might exploit them.
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1 INTRODUCTION

Modern smartphones contain a lot of different functionalities. A
phone is used to manage nearly every aspect of our modern life. The
smartphone-OS market is dominated by two big players, Google’s
Android and Apple’s I0s. While Apples IOs is very restrictive and
only gets used on their own devices, Android is open source and
used by a wide variety of vendors. Android is not only used for
smartphones and tablets but also on other devices, like smart devices
or for modern IoT products. With a market share of over 80 % in the
smartphone market Android is the biggest market out there, and
many manufacturers and vendors try to participate in this market.
To stand out in this market, it is vital to have a unique selling
point to attract new customers to sell their products. This unique
selling point can be, for example, the price or the features. Unfortu-
nately, both of these aspects often come at the expense of security.
As a result, smartphones are often developed under pressure to
keep costs down and implement new features as soon as possible so
that manufacturers can profit from their new unique selling point
as long as possible to have an advantage over their competition.
Today’s smartphones already come with many functionalities.
They have multitouch- screens, several cameras on the front and
the back of the phone, several speakers, microphones, a charging
port, a headphone jack, a micro SD card slot, NSC, Bluetooth, Wifi,
a cellular antenna, fingerprint sensors ... the list goes on. Some
of these features are prerequisites for each new modern smart-
phone others are uniquely for the device or manufacturers. Many
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of these features get customized with proprietary software for man-
ufacturer’s specific features like Samsung’s alternative for Apple’s
airdrop called Quick Share. All these technologies must be inte-
grated into a device and customized to run appropriately with the
used Android version. This process is tediously and can consume a
lot of time and effort, especially if the manufacturers and vendors
want to do this in a secure and tested fashion.

All these features and customizations come with a price. Each
of them opens up potential attack surfaces for vulnerabilities and
exploits. Between 2015 and 2018, the Android security bulletin
program listed over 2179 vulnerabilities with over 1349 publicly
accessible patches. 20% were considered critical, 61% were consid-
ered high priority, 18% were considered moderate, and less than
one percent were considered low priority. 60% of these patches only
required changes in a single file. 50% was even fixable in less than
ten lines of code, and 9.5% only needed changes in a single line of
code to get patched. This shows that most of these vulnerabilities
are integrated with the development phase and overseen by inter-
nal testing. 92.75% of the analyzed vulnerabilities in the Android
security bulletin program were related to code written in C and
C++. Only 7.25% of the vulnerabilities are related to code written in
Java or similar languages. The Android kernel accounts for 65.9%
of the vulnerabilities, while the native libraries layer accounts for
23.9% of the vulnerabilities. The Android runtime, the application
framework, and the system applications only account for 9.45% of
the vulnerabilities in the Android security bulletin program. From
the 65.9% of the kernel vulnerabilities, more than 54% are associated
with hardware drivers alone, which shows how severe the problem
is.[25]

2 ANDROID DEVICE REQUIEREMENTS

The development process for a new Android device can be very
complicated. The Android- system itself is based on the Linux ker-
nel. Android only uses the LTS- versions of the Linux kernel [11].
First of all, the Linux- kernel has to be adjusted for Android. The
Android Open Source Project supplies the base- version, which
gets heavily customized by manufacturers and vendors. These cus-
tomized systems branch heavily not only between different devices
but also between different versions and regions. Also, vendors and
carriers can customize the products before the product finally finds
its way to the consumer. All these steps are time-sensitive and
developed under pressure.

While most developers publish their customized code, the config-
uration with which the devices are shipped is often not published.
The manufacturers are forced to publish at last the customized
Linux kernel of their Android System because the Linux kernel
is licensed by the GNU GPLv2 license, which includes a copy-left



clause [1] [3]. This requires that customized code of the Linux ker-
nel also has to be published freely. Because some drivers need to be
heavily integrated into the kernel to work correctly, they also could
be considered as part of the Linux kernel [12]. This could mean
that this copy-left license also affects these drivers. Nevertheless,
often such drivers are not open source. Especially since Android
version 8, where Google introduced project Treble. With project
Treble Google introduced a new architecture for the Android sys-
tem, which aimed to separate the manufacturer’s customization
from the core resources of the Android kernel [15]. The Hardware
abstraction layer defined interfaces for vendor customization. Be-
fore these, an update of the Android major version required an
update for the device drivers, which are integrated into the kernel.
These forced the manufacturers to go back in their supply chain
and request updates from their suppliers, which could go back up to
the silicon manufacturers. If only one of these parties does not sup-
ply updates, the whole system update could be at risk. Because of
these reasons, the process was cost-intensive and very unattractive.
The introduced vendor interfaces of project Treble are cross-version
interfaces. That made it much easier to update the Android kernel
or install a custom Android version on a device [15]. The drivers get
stored, with other customizations, in a separated system partition
and are accessible for the Android kernel there [17].

If a manufacturer or vendor only wants to release an Android
compatible device, manufacturers must validate their product. There-
fore they have to comply with the CDD (Compatibility Definition
Document). The CDD lists all requirements that the manufacturers
must meet before they have a valid Android device for a specified
version of the Android system. Google releases a new CDD for
each Android version that gets published [10]. The CDD addresses
requirements depending on the Android version, for example, the
multimedia framework, hardware interfaces, and security require-
ments. [17]

If vendors and manufacturers want to brand and market their
devices as Android, they have to request a certification from Google
for that because the brand name Android is licensed by Google LLC
[13]. To qualify for certification, the manufacturers must pass tests
to prove their compatibility with AOSP. To ensure that, Google pub-
lishes the CTS (Compatibility Test Suite), which aims to check that
the AOSP requirements are satisfied. This suite is fully automated,
and many of these tests verify that the requirements of the CDD
are satisfied. Nevertheless, it does not ensure all requirements in
the CDD because some of them are challenging to express as a test
suite. [17]

Google’s services like Google Maps, Youtube, Gmail, or the Play-
Store are part of the GMS (Google Mobile Services). If manufacturers
and vendors what to ship their devices with these services included,
they also have to satisfy the requirements of the GTS (GMS require-
ment Test Suite). If the Android version is greater than 8 (which
contains the redesigned Android of Project Treble), the vendors and
manufacturers must pass another test suite called the VTS (Vendors
Test Suite). The VTS aims to ensure that the requirements, which
were introduced with the architecture changes of Project Treble,
are satisfied. [17]

It is important to note that the Manufacturers execute all these
tests and not Google or another instance. If all the tests pass, the

device is considered a CDD compliant device. Furthermore, it is
considered compliant with all the compatibility and security re-
quirements defined by Google. All these requirements ensure the
integrity of the whole system and are also important for driver
integration. [17]

3 DRIVER DEVELOPMENT PROCESS

The development of drivers for Android devices is not only a task
for the manufacturers of mobile devices. Even if the manufacturers
are responsible for the finished product, they often buy compo-
nents for their devices from other suppliers. The supplier often
ships their components with the necessary software and service
contracts. Nevertheless, suppliers often buy sub-components or
services in the development and design of hardware and software.
It can involve several suppliers until the origin source of a silicon
manufacturer is reached. These can make it hard for manufacturers
to get fast updates and patches for their products. This environment
for product development offers opportunities for mistakes which
can end up as vulnerability in the finished device. [26]

Also, when the manufacturer sells the finished device, that does
not mean that the product and drivers are set and done. The prod-
ucts often get shipped worldwide and distributed by different deal-
ers and vendors. So the installed systems need to be customized and
configured for the target market. Also, the drivers can be affected
by this customization. For example, Wifi, Bluetooth, and cellular
drivers have to use different frequencies in different markets.

This heterogeneous environment with different versions and
flavors of Android makes it difficult for researchers to approach
these issues. [26]

Project treble improved this situation a lot because drivers, which
were directly integrated into AOSP, are now developed for different
cross-version interfaces. This makes it a lot easier to update a driver
or a part of the Android system because the interfaces ensure that
there are no unknown dependencies destroyed. [15]

Also, there is a direct advantage for security. Before Project
Treble, the integrated drivers must be integrated into the SELinux
rules. This can be a very laborious process in which every use case
of the driver needs to be addressed. Often manufacturers bypassed
these problems by over privileging the driver’s access, which can
threaten system security because these drivers could also have
high if not root access to system resources. But with project Treble
interfaces were introduced for most drivers, and these interfaces
were already integrated into the SELinux rules for AOSP. [23]

4 DRIVERS IN ANDROID

Most mobile phones have their components integrated into a single
board. Primarily they do not support device discovery like USB
or PCI that are mostly used by laptops, computers, and servers.
For this reason, the Linux kernel uses a virtual platform bus with
a device tree file to manage these peripherals. A device tree file
describes the configuration for all components on a board. It is
loaded with the kernel at boot time and makes the kernel aware
that these components exists and how to access them.[18]
Drivers for the Linux kernel can be distinguished into three
basic types. A character device (char device), a block device, or a
network device. A char device can be accessed with a byte stream.



For example, a file can be accessed as a stream. Such drivers mostly
implement the usual behavior like the known system-calls like
open(), close(), read() and write(). Such devices are represented with
stream abstractions like the consol driver or the serial ports. They
are accessed similarly to filesystem nodes. Block devices are, like
char devices, accessed by filesystem nodes, but a block device is a
device that hosts a filesystem itself (Like a hard disk). The interface
of block devices is different from that for char devices from a kernel
perspective. A network device is a device that can exchange data
with other hosts in a network. In regular, they are not using system
calls like read() or write(). Instead, they often use ioctl functions that
manage the transmission of packages and the network resource
management. Network devices are, for example, a Wifi card, LAN,
or a VPN like Wireguard that can be integrated into the kernel level.
(9]

Linux has defined an interface to communicate with drivers. For
easy operation syscalls like open(), close(), read(), write() or seek() can
be used. Input/output control (ioctl) is used to depict more complex
functionalities. Ioctl is a system call for device-specific operations.
It uses three parameters. Frist an open file descriptor, second a
device-dependent request code, and third is an integer or pointer,
which will be used to transport data into and out of the driver. Ioctl
can be used to communicate with devices attached to a computer,
for example, via. USB. But it can also be used for kernel extensions
or terminal implementation. Despite standardized system calls, the
data used by ioctl calls are not bound to standard interfaces. A
driver that uses icotl can design and use their own complex data
structure for communication. This can make it very difficult to
understand and analyze a ioctl interface. Nevertheless, one critical
vulnerability in this data can introduce a critical vulnerability to
the kernel. Android also uses this ioctl system from Linux. [2] [8]

(9]

5 BINARY HARDENING

Drivers often contain vulnerabilities because they often can inter-
act with the kernel with high privileges (Sometimes even as root).
Often these drivers are developed by third parties. The source of
these drivers is often considered to be no part of the Linux kernel.
For this reason, it does not have to be open source. In Android ver-
sions, prior to Android Version 8 the customization of the Android
system was not separated from APSO and the core resources. This
proprietary code made it difficult to test, and also, vulnerabilities
often were highly critical because the drivers are so tightly bound
to the kernel.[18] [8]

Android introduced several techniques to ensure the integrity
of binaries in different Android versions and made them a required
technique. These can also be applied to drivers. While the CDD
started discussing binary hardening with Android version 9 in
2018, google already started discussing this topic on der Security
Enhancements (SE) webpage since 2009. [17]

NX is a technique used by Processors to differentiate between
non-executable data in memory and executable data in memory.
Here, the CPU will read the NX bit to decide how to process the
data. The feature is branded differently by each manufacturer of
CPUs. Intel uses the term XD, AMD uses the term NX, and the ARM
architecture uses the term XN. Possemato et al. [17] has analyzed

the usage of NX protection in manufacturers and vendors binaries.
The feature is used in all Binaries of AOSP since API- version 10.
However, even in API- version 28, the manufacturers have coverage
for their binaries between 50 and 80 percent.

Stack canaries are a common technique to avoid buffer overflow
problems. A Buffer overflow usually occurs if a program writes
to a memory space outside the allocated memory for this task.
Buffer overflow protection modifies the organization of the stack-
allocated data to include a canary value. If destroyed, the value
shows that the memory is corrupted, and if the canary value is
validated, the affected program can be terminated to prevent further
damage. Possemato et al. [17] has shown that AOSP has reached
a ubiquitous coverage for this technique of nearly 100 percent in
their binaries since SDK version 24 while manufacturers binaries
still show coverage of 50 to 80 percent.

PIE is a technique that can be enabled at compile time. A binary
using PIE is loaded into different locations in virtual memory each
time it is loaded. Also, its dependencies are loaded into different
locations each time. This makes Return Oriented Programming
(ROP) attacks much more complicated to execute [19]. Google first
mentioned this in its security enhancements with SDK- version 16.
Nevertheless, it was already used in versions prior to 16 by AOSP
and manufacturers. Possemato et al. [17] shows that since version
21, a ubiquitous amount of binaries from manufacturers used this
technique.

If binaries use shared libraries, they use the Global Offset Table
(GOT) to find them. GOT contains pointers that point to the location
of the actual function. GOT is populated dynamically and uses lazy
binding. When a function is requested, GOT will request it, so a
dynamic linker is called to provide it. Since GOT is stored at a
predefined place in memory, an attacker could try to override the
pointers to execute arbitrary code with elevated privileges [22].
To avoid this problem, the linker must write the pointers to the
functions of the shared libraries at the beginning of execution
and then mark them as read-only [22]. This technique was first
mentioned in SE and widely used by AOSP with SDK- version 16.
AOSP reached a coverage for their binaries of over 90% since then,
while manufacturers mostly reached a coverage of 50 to 75 percent
[17].

Fortify source is a makro compiler extension, which checks the
code at compile time for buffer overflows and logs a warning [21].
Google SE first mentioned this enhancement with SDK version
17. In version 28 AOSP has coverage of roughly 75 percent while
manufacturers average between 45 and 65 percent [17].

Setuid executables are binaries that can change the user with
whom a task is executed — an executable needs special permission
to execute such tasks. Since Android 4.3 with SDK 18, AOSP has
removed all setuid binaries to prevent abuse for privilege escalation.
However, in the manufacturer’s Android binaries for Android SDK
versions subsequent to 18, 15% of images contained at least one
setuid executable. Binaries that appear most frequently are the su
(18%), procmem (17%), netcfg (16%), procrank (12%), and tcpdump
(11%). Developers often use these binaries for debugging but should
be removed for product images. [17]

Vulnerabilities are often caused in the drivers or with the in-
tegration of these drivers. [26] It is especially hard to find such



vulnerabilities because a dynamic code analysis is limited by the
dependencies to the necessary Hardware. [18]

6 DEVICE DRIVER FUZZING

As mentioned above, customized ROMs’ drivers can be highly het-
erogeneous and run with different configurations. Often drivers
are not open source. Out of the 2179 analyzed vulnerabilities till
2018 in the Android security bulletins program, 22.9% were related
to closed-source code [25]. This poses a complex challenge for re-
searchers and scientists in this field. If no code is accessible for
static code analysis, other ways have to be found to investigate
drivers.

Fuzzing is one of the most used techniques to analyze and test
Android device drivers. Fuzzing is a kind of testing where the ap-
plication is automatically called with semi-valid input data that is
randomly generated. The application is then monitored for misbe-
havior, errors, or crashes. If such a constellation occurs, it can be
further investigated with the input that triggered the exception. It
might be that it cannot be reproduced, so a record can be very help-
ful. For example, if a Blackbox test, like fuzzing, leads to a device
crash, it might be due to a raise-condition and/or incoming IO inter-
rupts. It can be tough to reproduce such a constellation. However,
if the test is recorded and can be replayed, further investigation
can take place for this situation [24]. Fuzzers are most effective if
the generated input can be optimized for the application so that
there is a better chance than only brute force to find errors. For this
reason, fuzzers are mostly used for applications that take structured
input[24]. This can be a challenge for fuzzing ioctl drivers because
of their independent interface design. To effectively fuzz a driver,
the interface for calls must be known. The easiest way to do that is
to monitor calls to the driver and log them to mutate the inputs that
where used. But this approach only works for drivers who do not
use pointers in their calls, leading to unexpected side effects. Also,
it cannot be ensured that all driver functionalities get tested. There
might be calls and parameters that trigger unknown functionalities.
To ensure coverage for all functionalities it is better to know the
driver interface from documentation or source code [8].

Fuzzing is not a new technique. Before it was used to test the
Android kernel, fuzzers were developed for numerous other reasons.
With Iofuzz, ioattack, ioctlbf and ioctlfuzzer there are several fuzzers
for the Windows kernel. There are also projects to fuzz the Mac OS
kernels. For Linux kernels, the most known Fuzzers are Trinity and
syzkaller. [14]

What makes fuzzing on Android devices also more difficult is
the ARM architecture of the system. ARM is based on the RISC (Re-
duced Instruction Set Computing) while normal PCs work with x86,
which is based on the CISC (Complex Instruction Set Computing)
architecture. CISC supports several features that are interesting for
fuzzing and debugging that are not available in a RISC architecture.
For example, it is an interesting information for fuzzing frameworks
to know their code coverage. This is also called Coverage-guided
fuzzing. While with x86 this information can be requested, ARM
does not support such features right away. [14]

With one of the first papers for driver fuzzing on Android Bo-
jiang, et al. [9] published ADDFuzzer. Inspired by previous work
on the Linux kernel for driver fuzzing, like the tool trinity, they

implemented an approach to fuzz drivers on Android systems. They
implemented tests for the standard system-calls open() close() read()
and write(). Also, they tried to implement the ioctl interface. To
recover the interface, they introduced the thesis that the driver
makes the interpretation of arguments right at the beginning. So
they recovered the interface from the reversed function that gets
called by an ioctl call. This is mostly true, but there can be argu-
ments that get used in other functions or classes of the driver. They
tried their approach on a Google Nexus 5 for one week and found
three crashes. All of them were reproducible. [9]

With DEFUZE Corina et al. [8] has shown an interesting ap-
proach for driver Fuzzing. He uses the source code to recover the
ioctl interface to generate data for fuzzing. Using sources is bet-
ter and easier than trying to reverse the driver, but as already
mentioned, sources are often not available for drivers. To increase
coverage and compare different fuzzers he used two different fuzzer
implementations and added his recovered interface information
to them. He tested his approach on seven different platforms and
claims to have found 36 new vulnerabilities with his approach on
several Android devices. While his approach increased the precision
with which the Fuzzer is working, there is still room to improve
the input generation. Coverage and IO side effects leave room for
further work. Also, his approach is limited by the physical device
resources. [8]

Inspired by DEFUZE Shuaibing et al. [14] picked up the idea and
tried to develop it further. They automated most of the manual
work from defuze to recover the interfaces and find the device
driver’s names in Black- and Whitebox environments. They also
developed a technique to reverse closed source (Blackbox) drivers
to recover their interfaces. The results are promising. By comparing
Blackbox and Whitebox interface recovery, they found that fuzzing
with the Whitebox recovered interfaces found one bug not found
by the Blackbox interface recovery fuzzing. But on the other hand,
fuzzing with the Blackbox recovered interface also found a bug that
the Whitebox recovered interface has not found. They could not
prove that their recovery methods for Blockbox interface recovery
can find all valid commands, but there is still proving to find 98%
of the valid driver input commands. Also, they tried to prototype
a Code-Coverage fuzzing on an x86-64 based Android kernel to
use CISC tools for Coverage-guided fuzzing. So they managed to
increase the coverage from 14.5% to 35.08%. However, fuzzing on
another system architecture can have side effects that can raise
false positives or miss out vulnerabilities on ARM architectures.
They tested their approach on 11 different devices and claimed to
have found 28 vulnerabilities. Nine of them were confirmed by the
manufacturers and have CVEs assigned. Eight of these CVEs are
referenced in their paper.

But not only a full recovery of the driver interface is a challenge
for driver fuzzing. Also is hard to scale driver fuzzing because of the
hardware dependencies. The execution of the fuzzing is in-vivo (on
device). With EASIER Pusogarov et. al. [18] introduces an ex-vivo
(of device) approach. They argue that most drivers depend only
superficially on hardware and kernel. So they developed an evasion
kernel that satisfies these superficial dependencies and enables dri-
ver initialization ex-vivo. By evading and not emulating, resources
are saved, and user-space tools can be applied for analysis. This



enables easy scaling for fuzzing. They were able to load 77% of their
drivers (48 drivers) from 3 different manufacturers. In these drivers,
21 of 26 known vulnerabilities were found. Also, 29 unknown bugs
were detected and reported. Twelve of them were confirmed. On
the downside, this approach is not suitable for system call analysis.
Vulnerabilities that depend on malicious/compromised hardware
can not be found, interrupts are not supported, only a limited set
of platform bus architectures are supported, and such a setup can
produce false positives. [18]

To exploit a vulnerability in a device driver, like the media frame-
work, basic access to the target device is needed. Nevertheless,
some drivers manage hardware components like Wi-Fi, Bluetooth,
charging port, or cellular networking that might be exploited from
outside the system to infiltrate the device. This is especially con-
cerning because such vulnerabilities are zero-click vulnerabilities
where no user interaction is needed to exploit these vulnerabilities.
These drivers manage Hardware components that are often imple-
mented as a system on a Chip (SoC) which comes with their own
firmware. This firmware can also pose a potential attack surface.
With Frankenstein Ruge et al. [20] introduced a fuzzing framework
for non-wireless fuzzing of such firmware in an emulated environ-
ment. With this technique, they were no longer limited by physical
resources to fuzz the wireless interfaces over the air, which brought
their fuzzing speed to an unprecedented level. It is pointed out that
it is sometimes hard to fix a vulnerability in drivers that implement
standards like Bluetooth because the correct implementation of the
standard must still be ensured. Also, a firmware update might be
limited by the ROM storage and the physical capabilities of the chip.
(20]

7 DEVICE DRIVER REVERSING

Vulnerabilities in Android device drivers are not uncommon. There
are regularly and often highly ranked CVEs for Android device
drivers. More the half of the Android security bulletins are due to
vulnerabilities in device drivers [25]. This shows that they pose a
huge attack surface in the Android ecosystem. [16]

While a good amount of work is done for fuzzing device dri-
vers and governance, it is very challenging to get insights into
closed source implementations of drivers or chip firmware. More-
over, systematic approaches to reversing are complex because the
vulnerabilities and exploits are very individual and hard to com-
pare. The following case study is described to give insights into
the challenging work of reversing firmware and drivers, finding
vulnerabilities, and exploiting them.

With CVE-2017-0561 Google’s Project Zero [6] [7] found an
exploit in the Broadcom wi-fi driver that could be exploited to get
remote code execution and escalate the privileges on a target device.
Broadcom’s wi-fi solutions are widely used, not only in Android
but also in Apple devices. Often such chips are designed as System
On a Chip (SoC). They come with their own proprietary software
that already implements all necessary standards that are required.
This makes it easy to integrate them into a host system.

An SoC is like a separate tiny computer with its own storage,
memory, and processor (In this case, 640KB of ROM and 768KB
of RAM). First, the researchers investigated the device’s initial-
ization and found that the initial data loaded into the RAM is not

stored in the ROM but provided by the device driver at initialization.
Broadcom went to extreme efforts in order to conserve memory.
The researchers found several vulnerabilities in the implementa-
tion of the 802.11rFT standard for supporting wireless roaming
features. Also, they found a vulnerability in the CCKM implementa-
tion, which is a proprietor standard from Cisco. Both could be used
the trigger a stack overflow. Furthermore, they found a bug in the
implementation of the 802.11z for TDLS (tunnel direct link setup).
TDLS can be used for communication between two devices without
passing it through an AP (access point). This makes an attack even
more interesting because an attacker does not have to pose as AP.
Also, the standard is open source. The Broadcom implementation
of the initialization and the teardown of the TDLS connection are
vulnerable due to buffer overflows. However, a buffer overflow does
not imply that it can be abused right away. So they first had to
evaluate what buffer overflows can be triggered, which fields in the
wi-fi frames are under their control and can be used for a buffer
overflow, where and how much memory can be overflown, and
what targets are interesting to attack in memory. They crafted a
wi-fl attack frame, which triggered the overflow, and checked the
behavior in the SoC memory to see that the overflow is working
as expected. After evaluation, the researchers exploited a mem-
ory overflow in the teardown phase of TDLS, which allowed an
overflow of 25 bytes. They used this to create two overlapping free
chunks in memory. So they used the smaller chunk to manipulate
the pointer to a timer that controlled a regularly executed job that
searches for other available networks in the area. [6] [5]

From there on, the researchers tried to escalate their privileges
out of the wi-fi SoC to the host kernel. Their first approach was to
investigate how the SoC communicates with the wi-fi driver on the
host system. SoC and host use the same channel to communicate
commands and transport the operative data. The only difference
is that command frames are marked with a unique identifier. The
EtherType for these frames is 0x886C. To avoid that incoming wi-fi
frames trying to abuse this fact, wi-fi frames get validated for this
EtherType on both sides, the host driver and the SoC. If an external
frame tries to pose as such a command frame, it gets discarded. But
with the exploit on the SoC they were able to deactivate this vali-
dation in memory. So they can send packages with the EtherType
0x886C that does not get discarded by the SoC and get forwarded
to the host driver where they get interpreted. The host driver con-
tains lots of logic that can be abused with this kind of frames. The
researchers even were able to trigger a buffer overflow but found
no way to further escalate their privileges from thereon. The only
thing they were able to do was to crash the device. Nevertheless,
exploiting the driver was not the only approach to attack the host
system. The communication between SoC and the host system is
running on the PCle standard. PCle is a very popular standard
because it offers support for Direct Memory Access (DMA) and
enables the system to achieve high throughput. PCle is not regular
PCI because it is based on a point-to-point topology. DMA-capable
components can be very dangerous for the host system memory. To
avoid that an external device can freely access the host memory, the
system is protecting itself with additional memory mapping units
(IOMMUs). The ARM architecture uses its IOMMU implementation
— the System Memory Mapping Unit (SMMU). The SMMU ensures



that a device can only access an assigned memory space to perform
operations. Unfortunately, most mobile SoC are proprietary, mak-
ing it harder to validate if SMMUs are actually in place to protect
the host memory. By verifying these dependencies for the SMMU
for the Broadcom wi-fi SoC, they found that no SMMU is in place
for the SoC or it is configured to access the host’s memory directly.
This enables them to access the whole host memory from the wi-fi
SoC to insert their own arbitrary exploits. From this point, with full
access to the whole host memory, known exploits and techniques
can be used to infiltrate the target device. They tested their exploit
on a Nexus 6P and a Samsung Exynos 8890 SoC. [7]

The researchers from Googles project Zero started their work
in December 2016 and published their results in April 2017. This
advanced reversing, analyzing, and exploiting shows how deep the
attack surface can be. Such vulnerabilities are out of the range of
common fuzzing frameworks but still offer vast opportunities for
attackers. Even if this is done by top researchers from one of the
most prestigious tech companies out there, it is hard to believe that
there aren’t other parties that try to find and use such exploits for
their own advantage.

To systemize the problem. From a Linux kernel perspective, a
device driver is a component that connects to a resource. However,
a driver is just application logic that provides an interface for in-
teracting with another resource like an SoC or application logic
like multimedia frameworks. This resource might then also inter-
act with other devices like an AP. Fuzzing the device driver from
userspace with syscalls is a well-known technique even on Android
systems. Also, there are approaches for analyzing and fuzzing from
outside the system. But the connection between the firmware and
the driver is very hard to analyze, especially on closed source plat-
forms that do not allow further access to this communication. But
still, this is important as the researchers of project zero show be-
cause the firmware can give access to resources of the host system
due to bad integration or further exploits that can be triggered from
this perspective. In theory, each connection and each direction in
this architecture should be tested because each perspective could be
the point of view of an attacker trying to exploit his way through
the system.

External H SoC Firmware H Driver H Host kernel

8 RELATED AND FURTHER WORK

Not only device drivers are a security problem on the Android
platform. Possemato et al. [17] show in their paper "Trust, But Ver-
ify" that there overall structural problems in the design process
of new Android devices. With the CDD, CTS, and VTS, google
tried to define basic requirements that must be satisfied by manu-
facturers to brand their devices as Android and to use the Google
Mobile Services (GMS). Google has the juristic tools to enforce
these requirements. Nevertheless, Possento et al. have found that
20% of their investigated images (579 images) violate at least one re-
quirement of the CDD. Even 11 devices that are branded by google
themselves violate the requirements of the CDD.

In the kernel and system environment, not only device drivers are
a problem. Also, compliance issues are problematic. Most of these

compliance violations introduce vulnerabilities because best prac-
tices are violated, which should be enforced by the requirements
defined by google. Next to drivers, there are often bad SELinux poli-
cies or vulnerabilities in Initscripts. Their analysis shows that the
problems regarding the compliance violations are not improving
over time with newer versions. [17]

Also, the overall customization of AOSP from vendors, manufac-
turers, carriers, and suppliers can introduce band configurations
that can be exploited, as shown by Aafer et al. [4] who have ana-
lyzed several ROMs from different manufacturers with a differential
approach. They implemented several exploits for different devices
tampering with system settings, triggering emergency broadcasts,
sending SMS, and stealing emails. [4]

9 CONCLUSION

Drivers on the Android platform offer an incredible attack surface
for exploits. With more than 54% of the issues in the Android
security bulletins, they take a lion share [25]. The supply chain
that develops obstructs and distributes these drivers do not make it
easy for third parties to investigate their security. The ecosystem of
Android and device drivers looks very heterogenous with hundreds
of different devices and thousands of different versions. But this
appearance is deceptive. Often chips and modules for smartphones
are used in several devices from several manufacturers. Drivers are
similar, if not the same, for different devices.

It is shown how these problems are seen from different perspec-
tives. First, a management perspective focuses on the requirements
for developing a new Android product. Requierements and recom-
mendations from the CDD, CTS, GTS or the VTS are discussed.
And best practices are explaint. Often requirements are not met,
and also recommendations are discarded. Appropriate and secure
driver integration is often seen as a cost case that can be bypassed.

From a research perspective, it is hard to find systematic ways to
analyse this heterogeneous environment that is often closed source.
Mostly Blackbox approaches are used to investigate these areas.
Unfortunately, work in this sector is still slowed down by issues
that block access to these components. It is understandable that
companies keep their code private in order to protect their intel-
lectual property. Nevertheless, this also hinders security research
that is also for the benefit of these companies. For this reason, a lot
of resources in security research are spent on interface recovery
and emulation/simulation in device fuzzing. Such efforts could be
saved if interfaces for drivers were documented. In best case as
machine-readable interface documentation.

From an attacker’s perspective, they can take advantage of the
fact that they might know their target device. As shown in the case
study, it is possible to find exploits in target devices with enough
resources. This might be a valid method for nation-state actors to
intrude a target.
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